Algebricks:用于大数据语言的数据模型无关的编译器后端

V. Borkar, Yingyi Bu, E. Carman, Nicola Onose, T. Westmann, Pouria Pirzadeh, M. Carey, V. Tsotras
{"title":"Algebricks:用于大数据语言的数据模型无关的编译器后端","authors":"V. Borkar, Yingyi Bu, E. Carman, Nicola Onose, T. Westmann, Pouria Pirzadeh, M. Carey, V. Tsotras","doi":"10.1145/2806777.2806941","DOIUrl":null,"url":null,"abstract":"A number of high-level query languages, such as Hive, Pig, Flume, and Jaql, have been developed in recent years to increase analyst productivity when processing and analyzing very large datasets. The implementation of each of these languages includes a complete, data model-dependent query compiler, yet each involves a number of similar optimizations. In this work, we describe a new query compiler architecture that separates language-specific and data model-dependent aspects from a more general query compiler backend that can generate executable data-parallel programs for shared-nothing clusters and can be used to develop multiple languages with different data models. We have built such a data model-agnostic query compiler substrate, called Algebricks, and have used it to implement three different query languages --- HiveQL, AQL, and XQuery --- to validate the efficacy of this approach. Experiments show that all three query languages benefit from the parallelization and optimization that Algebricks provides and thus have good parallel speedup and scaleup characteristics for large datasets.","PeriodicalId":275158,"journal":{"name":"Proceedings of the Sixth ACM Symposium on Cloud Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Algebricks: a data model-agnostic compiler backend for big data languages\",\"authors\":\"V. Borkar, Yingyi Bu, E. Carman, Nicola Onose, T. Westmann, Pouria Pirzadeh, M. Carey, V. Tsotras\",\"doi\":\"10.1145/2806777.2806941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of high-level query languages, such as Hive, Pig, Flume, and Jaql, have been developed in recent years to increase analyst productivity when processing and analyzing very large datasets. The implementation of each of these languages includes a complete, data model-dependent query compiler, yet each involves a number of similar optimizations. In this work, we describe a new query compiler architecture that separates language-specific and data model-dependent aspects from a more general query compiler backend that can generate executable data-parallel programs for shared-nothing clusters and can be used to develop multiple languages with different data models. We have built such a data model-agnostic query compiler substrate, called Algebricks, and have used it to implement three different query languages --- HiveQL, AQL, and XQuery --- to validate the efficacy of this approach. Experiments show that all three query languages benefit from the parallelization and optimization that Algebricks provides and thus have good parallel speedup and scaleup characteristics for large datasets.\",\"PeriodicalId\":275158,\"journal\":{\"name\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2806777.2806941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2806777.2806941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

近年来开发了许多高级查询语言,如Hive、Pig、Flume和Jaql,以提高分析人员在处理和分析非常大的数据集时的工作效率。每种语言的实现都包括一个完整的、依赖于数据模型的查询编译器,但每种语言都涉及许多类似的优化。在这项工作中,我们描述了一种新的查询编译器架构,它将特定于语言和数据模型相关的方面与更通用的查询编译器后端分离开来,后者可以为无共享集群生成可执行的数据并行程序,并可用于开发具有不同数据模型的多种语言。我们已经构建了这样一个与数据模型无关的查询编译器底层,称为Algebricks,并使用它来实现三种不同的查询语言——HiveQL、AQL和XQuery——以验证这种方法的有效性。实验表明,这三种查询语言都受益于Algebricks提供的并行化和优化,因此对于大型数据集具有良好的并行加速和缩放特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebricks: a data model-agnostic compiler backend for big data languages
A number of high-level query languages, such as Hive, Pig, Flume, and Jaql, have been developed in recent years to increase analyst productivity when processing and analyzing very large datasets. The implementation of each of these languages includes a complete, data model-dependent query compiler, yet each involves a number of similar optimizations. In this work, we describe a new query compiler architecture that separates language-specific and data model-dependent aspects from a more general query compiler backend that can generate executable data-parallel programs for shared-nothing clusters and can be used to develop multiple languages with different data models. We have built such a data model-agnostic query compiler substrate, called Algebricks, and have used it to implement three different query languages --- HiveQL, AQL, and XQuery --- to validate the efficacy of this approach. Experiments show that all three query languages benefit from the parallelization and optimization that Algebricks provides and thus have good parallel speedup and scaleup characteristics for large datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信