Randall Balestriero, Zichao Wang, Richard Baraniuk
{"title":"DeepHull:高维快速凸壳近似","authors":"Randall Balestriero, Zichao Wang, Richard Baraniuk","doi":"10.1109/ICASSP43922.2022.9746031","DOIUrl":null,"url":null,"abstract":"Computing or approximating the convex hull of a dataset plays a role in a wide range of applications, including economics, statistics, and physics, to name just a few. However, convex hull computation and approximation is exponentially complex, in terms of both memory and computation, as the ambient space dimension increases. In this paper, we propose DeepHull, a new convex hull approximation algorithm based on convex deep networks (DNs) with continuous piecewise-affine nonlinearities and nonnegative weights. The idea is that binary classification between true data samples and adversarially generated samples with such a DN naturally induces a polytope decision boundary that approximates the true data convex hull. A range of exploratory experiments demonstrates that DeepHull efficiently produces a meaningful convex hull approximation, even in a high-dimensional ambient space.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DeepHull: Fast Convex Hull Approximation in High Dimensions\",\"authors\":\"Randall Balestriero, Zichao Wang, Richard Baraniuk\",\"doi\":\"10.1109/ICASSP43922.2022.9746031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing or approximating the convex hull of a dataset plays a role in a wide range of applications, including economics, statistics, and physics, to name just a few. However, convex hull computation and approximation is exponentially complex, in terms of both memory and computation, as the ambient space dimension increases. In this paper, we propose DeepHull, a new convex hull approximation algorithm based on convex deep networks (DNs) with continuous piecewise-affine nonlinearities and nonnegative weights. The idea is that binary classification between true data samples and adversarially generated samples with such a DN naturally induces a polytope decision boundary that approximates the true data convex hull. A range of exploratory experiments demonstrates that DeepHull efficiently produces a meaningful convex hull approximation, even in a high-dimensional ambient space.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP43922.2022.9746031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP43922.2022.9746031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeepHull: Fast Convex Hull Approximation in High Dimensions
Computing or approximating the convex hull of a dataset plays a role in a wide range of applications, including economics, statistics, and physics, to name just a few. However, convex hull computation and approximation is exponentially complex, in terms of both memory and computation, as the ambient space dimension increases. In this paper, we propose DeepHull, a new convex hull approximation algorithm based on convex deep networks (DNs) with continuous piecewise-affine nonlinearities and nonnegative weights. The idea is that binary classification between true data samples and adversarially generated samples with such a DN naturally induces a polytope decision boundary that approximates the true data convex hull. A range of exploratory experiments demonstrates that DeepHull efficiently produces a meaningful convex hull approximation, even in a high-dimensional ambient space.