P. Savický
{"title":"奇偶排序二元决策图中变量的随机排序","authors":"P. Savický","doi":"10.1002/(SICI)1098-2418(200005)16:3%3C233::AID-RSA1%3E3.0.CO;2-Q","DOIUrl":null,"url":null,"abstract":"Ordered binary decision diagrams (OBDDs) are a model for representing Boolean functions. There is also a more powerful variant called parity OBDDs. The size of the representation of a given function depends in both these models on the chosen ordering of the variables. It is known that there are functions such that almost all orderings of their variables yield an OBDD of polynomial size, but there are also some exceptional orderings, for which the size is exponential. We prove that for parity OBDDs, the size for a random ordering and the size for the worst ordering are polynomially related. More exactly, for every ϵ>0 there is a number c>0 such that the following holds. If a Boolean function f of n variables is such that a random ordering of the variables yields a parity OBDD for f of size at most s with probability at least ϵ, where s≥n, then every ordering of the variables yields a parity OBDD for f of size at most sc. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 16: 233–239, 2000","PeriodicalId":303496,"journal":{"name":"Random Struct. Algorithms","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On random orderings of variables for parity ordered binary decision diagrams\",\"authors\":\"P. Savický\",\"doi\":\"10.1002/(SICI)1098-2418(200005)16:3%3C233::AID-RSA1%3E3.0.CO;2-Q\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ordered binary decision diagrams (OBDDs) are a model for representing Boolean functions. There is also a more powerful variant called parity OBDDs. The size of the representation of a given function depends in both these models on the chosen ordering of the variables. It is known that there are functions such that almost all orderings of their variables yield an OBDD of polynomial size, but there are also some exceptional orderings, for which the size is exponential. We prove that for parity OBDDs, the size for a random ordering and the size for the worst ordering are polynomially related. More exactly, for every ϵ>0 there is a number c>0 such that the following holds. If a Boolean function f of n variables is such that a random ordering of the variables yields a parity OBDD for f of size at most s with probability at least ϵ, where s≥n, then every ordering of the variables yields a parity OBDD for f of size at most sc. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 16: 233–239, 2000\",\"PeriodicalId\":303496,\"journal\":{\"name\":\"Random Struct. Algorithms\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Struct. Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/(SICI)1098-2418(200005)16:3%3C233::AID-RSA1%3E3.0.CO;2-Q\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Struct. Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1098-2418(200005)16:3%3C233::AID-RSA1%3E3.0.CO;2-Q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
On random orderings of variables for parity ordered binary decision diagrams
Ordered binary decision diagrams (OBDDs) are a model for representing Boolean functions. There is also a more powerful variant called parity OBDDs. The size of the representation of a given function depends in both these models on the chosen ordering of the variables. It is known that there are functions such that almost all orderings of their variables yield an OBDD of polynomial size, but there are also some exceptional orderings, for which the size is exponential. We prove that for parity OBDDs, the size for a random ordering and the size for the worst ordering are polynomially related. More exactly, for every ϵ>0 there is a number c>0 such that the following holds. If a Boolean function f of n variables is such that a random ordering of the variables yields a parity OBDD for f of size at most s with probability at least ϵ, where s≥n, then every ordering of the variables yields a parity OBDD for f of size at most sc. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 16: 233–239, 2000