TAPA:基于Map-Reduce的数据中心温度感知功率分配

Shen Li, T. Abdelzaher, Mindi Yuan
{"title":"TAPA:基于Map-Reduce的数据中心温度感知功率分配","authors":"Shen Li, T. Abdelzaher, Mindi Yuan","doi":"10.1109/IGCC.2011.6008602","DOIUrl":null,"url":null,"abstract":"In this paper, we analytically derive, implement, and empirically evaluate a solution for maximizing the execution rate of Map-Reduce jobs subject to power constraints in data centers. Our solution is novel in that it takes into account the dependence of power consumption on temperature, attributed to temperature-induced changes in leakage current and fan speed. While this dependence is well-known, we are the first to consider it in the context of maximizing the throughput of Map-Reduce workdloads. Accordingly, we provide a new power model and optimization strategy for temperature-aware power allocation (TAPA), and modify Hadoop on a 13-machine cluster to implement our optimization algorithm. Our experimental results show that TAPA can not only limit the power consumption to the power budget but also achieves higher computational efficiency against static solutions and temperature oblivious DVFS solutions.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"TAPA: Temperature aware power allocation in data center with Map-Reduce\",\"authors\":\"Shen Li, T. Abdelzaher, Mindi Yuan\",\"doi\":\"10.1109/IGCC.2011.6008602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analytically derive, implement, and empirically evaluate a solution for maximizing the execution rate of Map-Reduce jobs subject to power constraints in data centers. Our solution is novel in that it takes into account the dependence of power consumption on temperature, attributed to temperature-induced changes in leakage current and fan speed. While this dependence is well-known, we are the first to consider it in the context of maximizing the throughput of Map-Reduce workdloads. Accordingly, we provide a new power model and optimization strategy for temperature-aware power allocation (TAPA), and modify Hadoop on a 13-machine cluster to implement our optimization algorithm. Our experimental results show that TAPA can not only limit the power consumption to the power budget but also achieves higher computational efficiency against static solutions and temperature oblivious DVFS solutions.\",\"PeriodicalId\":306876,\"journal\":{\"name\":\"2011 International Green Computing Conference and Workshops\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Green Computing Conference and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2011.6008602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

在本文中,我们分析推导、实现和经验评估了一种解决方案,用于最大化数据中心中受功率限制的Map-Reduce作业的执行率。我们的解决方案是新颖的,因为它考虑了功耗对温度的依赖,归因于温度引起的泄漏电流和风扇速度的变化。虽然这种依赖性是众所周知的,但我们是第一个在最大化Map-Reduce工作负载吞吐量的上下文中考虑它的人。因此,我们提出了一种新的温度感知功率分配(TAPA)的功耗模型和优化策略,并在13台机器集群上修改Hadoop以实现我们的优化算法。实验结果表明,TAPA不仅可以将功耗限制在功率预算范围内,而且可以在静态解和温度无关的DVFS解中获得更高的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TAPA: Temperature aware power allocation in data center with Map-Reduce
In this paper, we analytically derive, implement, and empirically evaluate a solution for maximizing the execution rate of Map-Reduce jobs subject to power constraints in data centers. Our solution is novel in that it takes into account the dependence of power consumption on temperature, attributed to temperature-induced changes in leakage current and fan speed. While this dependence is well-known, we are the first to consider it in the context of maximizing the throughput of Map-Reduce workdloads. Accordingly, we provide a new power model and optimization strategy for temperature-aware power allocation (TAPA), and modify Hadoop on a 13-machine cluster to implement our optimization algorithm. Our experimental results show that TAPA can not only limit the power consumption to the power budget but also achieves higher computational efficiency against static solutions and temperature oblivious DVFS solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信