结合局部二值模式的散射变换纹理分类

Vu-Lam Nguyen, Ngoc-Son Vu, P. Gosselin
{"title":"结合局部二值模式的散射变换纹理分类","authors":"Vu-Lam Nguyen, Ngoc-Son Vu, P. Gosselin","doi":"10.1109/CBMI.2016.7500238","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a combined feature approach which takes full advantages of local structure information and the more global one for improving texture image classification results. In this way, Local Binary Pattern is used for extracting local features, whilst the Scattering Transform feature plays the role of a global descriptor. Intensive experiments conducted on many texture benchmarks such as ALOT, CUReT, KTH-TIPS2-a, KTH-TIPS2b, and OUTEX show that the combined method outweigh each one which stands alone in term of classification accuracy. Also, our method outperforms many others, whilst it is comparable to state of the art on the experimented datasets.","PeriodicalId":356608,"journal":{"name":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A scattering transform combination with local binary pattern for texture classification\",\"authors\":\"Vu-Lam Nguyen, Ngoc-Son Vu, P. Gosselin\",\"doi\":\"10.1109/CBMI.2016.7500238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a combined feature approach which takes full advantages of local structure information and the more global one for improving texture image classification results. In this way, Local Binary Pattern is used for extracting local features, whilst the Scattering Transform feature plays the role of a global descriptor. Intensive experiments conducted on many texture benchmarks such as ALOT, CUReT, KTH-TIPS2-a, KTH-TIPS2b, and OUTEX show that the combined method outweigh each one which stands alone in term of classification accuracy. Also, our method outperforms many others, whilst it is comparable to state of the art on the experimented datasets.\",\"PeriodicalId\":356608,\"journal\":{\"name\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2016.7500238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2016.7500238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种充分利用局部结构信息和全局结构信息的组合特征方法来提高纹理图像的分类效果。这样,局部二值模式被用来提取局部特征,而散射变换特征则扮演全局描述子的角色。在ALOT、CUReT、KTH-TIPS2-a、KTH-TIPS2b、OUTEX等多个纹理基准上进行的大量实验表明,组合方法在分类精度上优于单独使用的方法。此外,我们的方法优于许多其他方法,同时它可以与实验数据集上的最新技术相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scattering transform combination with local binary pattern for texture classification
In this paper, we propose a combined feature approach which takes full advantages of local structure information and the more global one for improving texture image classification results. In this way, Local Binary Pattern is used for extracting local features, whilst the Scattering Transform feature plays the role of a global descriptor. Intensive experiments conducted on many texture benchmarks such as ALOT, CUReT, KTH-TIPS2-a, KTH-TIPS2b, and OUTEX show that the combined method outweigh each one which stands alone in term of classification accuracy. Also, our method outperforms many others, whilst it is comparable to state of the art on the experimented datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信