{"title":"VibWriter:基于振动信号的手写识别系统","authors":"D. Ding, Lanqing Yang, Yi-Chao Chen, Guangtao Xue","doi":"10.1109/SECON52354.2021.9491615","DOIUrl":null,"url":null,"abstract":"The efficiency of human-computer interaction is greatly hindered by the small size of the touchscreens on mobile devices, such as smart phones and watches. This has prompted widespread interest in handwriting recognition systems, which can be divided into active and passive systems. Active systems require additional hardware devices to perceive movements of handwriting or the tracking accuracy is not adequate for hand-writing recognition. Passive methods use the acoustic signal of pen rubbing and are susceptible to environmental noise (above 60dB). This paper presents a novel handwriting recognition system based on vibration signals detected by the built-in accelerometer of smart phones. VibWriter is highly resistant to interference since the normal environmental noise will not cause the vibration of the accelerometer. Extensive experiments demonstrated the efficacy of the system in terms of accuracy in letter recognition (76.15%) and word recognition (88.14%) when dealing with words of various lengths written by various users in a variety of writing positions under a variety of environmental conditions.","PeriodicalId":120945,"journal":{"name":"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"VibWriter: Handwriting Recognition System based on Vibration Signal\",\"authors\":\"D. Ding, Lanqing Yang, Yi-Chao Chen, Guangtao Xue\",\"doi\":\"10.1109/SECON52354.2021.9491615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of human-computer interaction is greatly hindered by the small size of the touchscreens on mobile devices, such as smart phones and watches. This has prompted widespread interest in handwriting recognition systems, which can be divided into active and passive systems. Active systems require additional hardware devices to perceive movements of handwriting or the tracking accuracy is not adequate for hand-writing recognition. Passive methods use the acoustic signal of pen rubbing and are susceptible to environmental noise (above 60dB). This paper presents a novel handwriting recognition system based on vibration signals detected by the built-in accelerometer of smart phones. VibWriter is highly resistant to interference since the normal environmental noise will not cause the vibration of the accelerometer. Extensive experiments demonstrated the efficacy of the system in terms of accuracy in letter recognition (76.15%) and word recognition (88.14%) when dealing with words of various lengths written by various users in a variety of writing positions under a variety of environmental conditions.\",\"PeriodicalId\":120945,\"journal\":{\"name\":\"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON52354.2021.9491615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON52354.2021.9491615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VibWriter: Handwriting Recognition System based on Vibration Signal
The efficiency of human-computer interaction is greatly hindered by the small size of the touchscreens on mobile devices, such as smart phones and watches. This has prompted widespread interest in handwriting recognition systems, which can be divided into active and passive systems. Active systems require additional hardware devices to perceive movements of handwriting or the tracking accuracy is not adequate for hand-writing recognition. Passive methods use the acoustic signal of pen rubbing and are susceptible to environmental noise (above 60dB). This paper presents a novel handwriting recognition system based on vibration signals detected by the built-in accelerometer of smart phones. VibWriter is highly resistant to interference since the normal environmental noise will not cause the vibration of the accelerometer. Extensive experiments demonstrated the efficacy of the system in terms of accuracy in letter recognition (76.15%) and word recognition (88.14%) when dealing with words of various lengths written by various users in a variety of writing positions under a variety of environmental conditions.