结合ehrenfeucht - fraisse游戏

B. Rossman
{"title":"结合ehrenfeucht - fraisse游戏","authors":"B. Rossman","doi":"10.1109/LICS.2009.50","DOIUrl":null,"url":null,"abstract":"Ehrenfeucht-Fraisse games are a useful technique for proving inexpressibility results in first-order logic. Strategies for a few basic games (on long paths, set-powerset structures and random graphs, to name a few) can be used as a building blocks for strategies in more complicated games. In this talk, I will discuss a few general methods for combining strategies. Applications include results on the expressive power of successor-invariant logic and k-variable logic.","PeriodicalId":415902,"journal":{"name":"2009 24th Annual IEEE Symposium on Logic In Computer Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Ehrenfeucht-Fraïssé Games\",\"authors\":\"B. Rossman\",\"doi\":\"10.1109/LICS.2009.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ehrenfeucht-Fraisse games are a useful technique for proving inexpressibility results in first-order logic. Strategies for a few basic games (on long paths, set-powerset structures and random graphs, to name a few) can be used as a building blocks for strategies in more complicated games. In this talk, I will discuss a few general methods for combining strategies. Applications include results on the expressive power of successor-invariant logic and k-variable logic.\",\"PeriodicalId\":415902,\"journal\":{\"name\":\"2009 24th Annual IEEE Symposium on Logic In Computer Science\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 24th Annual IEEE Symposium on Logic In Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2009.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Symposium on Logic In Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2009.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Ehrenfeucht-Fraisse对策是证明一阶逻辑中不可表达结果的一种有用技术。一些基本游戏的策略(游戏邦注:如长路径、集-力集结构和随机图等)可以作为更复杂游戏策略的构建模块。在这次演讲中,我将讨论几种组合策略的一般方法。应用结果包括后继不变逻辑和k变量逻辑的表达能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Ehrenfeucht-Fraïssé Games
Ehrenfeucht-Fraisse games are a useful technique for proving inexpressibility results in first-order logic. Strategies for a few basic games (on long paths, set-powerset structures and random graphs, to name a few) can be used as a building blocks for strategies in more complicated games. In this talk, I will discuss a few general methods for combining strategies. Applications include results on the expressive power of successor-invariant logic and k-variable logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信