监测自然场景的特征提取和跟踪的独立分量分析(ICA)方法

J. Durham, W. Torrez
{"title":"监测自然场景的特征提取和跟踪的独立分量分析(ICA)方法","authors":"J. Durham, W. Torrez","doi":"10.1109/CIMSA.2004.1397217","DOIUrl":null,"url":null,"abstract":"An independent component analysis (ICA) approach to monitoring of natural scenes empirically generates robust image features for localization and tracking of potentially-occluded targets. The ICA-based empirical model utilizes statistical techniques that assist analysts in characterizing the underlying criteria that enables such feature extraction. Thus, this approach provides a basis for analyzing how the empirically generated feature localization and tracking models and related algorithms to perform their function.","PeriodicalId":102405,"journal":{"name":"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monitoring of natural scenes for feature extraction and tracking an independent component analysis (ICA) approach\",\"authors\":\"J. Durham, W. Torrez\",\"doi\":\"10.1109/CIMSA.2004.1397217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An independent component analysis (ICA) approach to monitoring of natural scenes empirically generates robust image features for localization and tracking of potentially-occluded targets. The ICA-based empirical model utilizes statistical techniques that assist analysts in characterizing the underlying criteria that enables such feature extraction. Thus, this approach provides a basis for analyzing how the empirically generated feature localization and tracking models and related algorithms to perform their function.\",\"PeriodicalId\":102405,\"journal\":{\"name\":\"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2004.1397217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2004.1397217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

独立分量分析(ICA)方法监测自然场景经验生成鲁棒图像特征的定位和跟踪潜在遮挡的目标。基于ica的经验模型利用统计技术,帮助分析人员描述能够实现这种特征提取的潜在标准。因此,该方法为分析经验生成的特征定位和跟踪模型及相关算法如何发挥其功能提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring of natural scenes for feature extraction and tracking an independent component analysis (ICA) approach
An independent component analysis (ICA) approach to monitoring of natural scenes empirically generates robust image features for localization and tracking of potentially-occluded targets. The ICA-based empirical model utilizes statistical techniques that assist analysts in characterizing the underlying criteria that enables such feature extraction. Thus, this approach provides a basis for analyzing how the empirically generated feature localization and tracking models and related algorithms to perform their function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信