基于生成知识转移的SAR目标检测

Xin Lou, Han Wang
{"title":"基于生成知识转移的SAR目标检测","authors":"Xin Lou, Han Wang","doi":"10.1109/mlsp52302.2021.9596254","DOIUrl":null,"url":null,"abstract":"To address the data acquisition and labeling problem for object detection in SAR images, a generative transfer learning framework consists with a knowledge transfer network and a object detection network is proposed. The knowledge transfer network generates pseudo SAR images whose spatial distribution are consistent with labeled optical images and feature distribution are similar to SAR images. These pseudo SAR images are further used to improve generalization performance of convolutional neural network based detection models. Experimental results on SAR SHIP Detection Datasets (SSDD) and AIR-SARShip-1.0 datasets confirm that the pseudo SAR images generated by our method can benefit the final detection prediction even no labeled SAR image is given at the training stage.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Object Detection in SAR Via Generative Knowledge Transfer\",\"authors\":\"Xin Lou, Han Wang\",\"doi\":\"10.1109/mlsp52302.2021.9596254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the data acquisition and labeling problem for object detection in SAR images, a generative transfer learning framework consists with a knowledge transfer network and a object detection network is proposed. The knowledge transfer network generates pseudo SAR images whose spatial distribution are consistent with labeled optical images and feature distribution are similar to SAR images. These pseudo SAR images are further used to improve generalization performance of convolutional neural network based detection models. Experimental results on SAR SHIP Detection Datasets (SSDD) and AIR-SARShip-1.0 datasets confirm that the pseudo SAR images generated by our method can benefit the final detection prediction even no labeled SAR image is given at the training stage.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了解决SAR图像中目标检测的数据采集和标注问题,提出了一种由知识转移网络和目标检测网络组成的生成式迁移学习框架。知识转移网络生成的伪SAR图像空间分布与标注光学图像一致,特征分布与SAR图像相似。这些伪SAR图像进一步用于提高基于卷积神经网络的检测模型的泛化性能。在SAR舰船检测数据集(SSDD)和AIR-SARShip-1.0数据集上的实验结果证实,即使在训练阶段没有给出标记的SAR图像,本文方法生成的伪SAR图像也有利于最终的检测预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Detection in SAR Via Generative Knowledge Transfer
To address the data acquisition and labeling problem for object detection in SAR images, a generative transfer learning framework consists with a knowledge transfer network and a object detection network is proposed. The knowledge transfer network generates pseudo SAR images whose spatial distribution are consistent with labeled optical images and feature distribution are similar to SAR images. These pseudo SAR images are further used to improve generalization performance of convolutional neural network based detection models. Experimental results on SAR SHIP Detection Datasets (SSDD) and AIR-SARShip-1.0 datasets confirm that the pseudo SAR images generated by our method can benefit the final detection prediction even no labeled SAR image is given at the training stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信