{"title":"融合参数约简的Multi-CNN人脸属性估计","authors":"Hiroya Kawai, Koichi Ito, T. Aoki","doi":"10.1109/ICB45273.2019.8987397","DOIUrl":null,"url":null,"abstract":"This paper proposes a face attribute estimation method using Merged Multi-CNN (MM-CNN). The proposed method merges single-task CNNs into one CNN by adding merging points and reduces the number of parameters by removing the fully-connected layers. We also propose a new idea of reducing parameters of CNN called Convolutionalization for Parameter Reduction (CPR), which estimates attributes using only convolution layers, in other words, does not need any fully-connected layers to estimate attributes from extracted features. Through a set of experiments using the Celeb A and LFW-a datasets, we demonstrated that MM- CNN with CPR exhibits higher efficiency of face attribute estimation than conventional methods.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Merged Multi-CNN with Parameter Reduction for Face Attribute Estimation\",\"authors\":\"Hiroya Kawai, Koichi Ito, T. Aoki\",\"doi\":\"10.1109/ICB45273.2019.8987397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a face attribute estimation method using Merged Multi-CNN (MM-CNN). The proposed method merges single-task CNNs into one CNN by adding merging points and reduces the number of parameters by removing the fully-connected layers. We also propose a new idea of reducing parameters of CNN called Convolutionalization for Parameter Reduction (CPR), which estimates attributes using only convolution layers, in other words, does not need any fully-connected layers to estimate attributes from extracted features. Through a set of experiments using the Celeb A and LFW-a datasets, we demonstrated that MM- CNN with CPR exhibits higher efficiency of face attribute estimation than conventional methods.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Merged Multi-CNN with Parameter Reduction for Face Attribute Estimation
This paper proposes a face attribute estimation method using Merged Multi-CNN (MM-CNN). The proposed method merges single-task CNNs into one CNN by adding merging points and reduces the number of parameters by removing the fully-connected layers. We also propose a new idea of reducing parameters of CNN called Convolutionalization for Parameter Reduction (CPR), which estimates attributes using only convolution layers, in other words, does not need any fully-connected layers to estimate attributes from extracted features. Through a set of experiments using the Celeb A and LFW-a datasets, we demonstrated that MM- CNN with CPR exhibits higher efficiency of face attribute estimation than conventional methods.