基于交通相位发现的交通视频时间分割

P. Ahmadi, Razie Kaviani, I. Gholampour, M. Tabandeh
{"title":"基于交通相位发现的交通视频时间分割","authors":"P. Ahmadi, Razie Kaviani, I. Gholampour, M. Tabandeh","doi":"10.1109/NOMS.2016.7502987","DOIUrl":null,"url":null,"abstract":"In this paper, the topic model is adopted to learn traffic phases from video sequence. Phase detection is applied to determine where a video clip is in the traffic light sequence. Each video clip is labeled by a certain traffic phase, based on which, videos are segmented clip by clip. Using topic models, without any prior knowledge of the traffic rules, activities are detected as distributions over quantized optical flow vectors. Then, traffic phases are discovered as clusters over activities according to the traffic signals. We employ the Fully Sparse Topic Model (FSTM) as the topic model. The results show that our method can successfully discover both activities and traffic phases which make veracious description and perception of traffic scenes.","PeriodicalId":344879,"journal":{"name":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Temporal segmentation of traffic videos based on traffic phase discovery\",\"authors\":\"P. Ahmadi, Razie Kaviani, I. Gholampour, M. Tabandeh\",\"doi\":\"10.1109/NOMS.2016.7502987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the topic model is adopted to learn traffic phases from video sequence. Phase detection is applied to determine where a video clip is in the traffic light sequence. Each video clip is labeled by a certain traffic phase, based on which, videos are segmented clip by clip. Using topic models, without any prior knowledge of the traffic rules, activities are detected as distributions over quantized optical flow vectors. Then, traffic phases are discovered as clusters over activities according to the traffic signals. We employ the Fully Sparse Topic Model (FSTM) as the topic model. The results show that our method can successfully discover both activities and traffic phases which make veracious description and perception of traffic scenes.\",\"PeriodicalId\":344879,\"journal\":{\"name\":\"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2016.7502987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2016.7502987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用主题模型从视频序列中学习交通相位。相位检测用于确定视频片段在交通灯序列中的位置。每个视频片段都被标记为一定的流量阶段,在此基础上,视频片段被分割。使用主题模型,在没有任何交通规则先验知识的情况下,活动被检测为量化光流矢量上的分布。然后,根据交通信号发现活动上的交通阶段簇。我们采用全稀疏主题模型(FSTM)作为主题模型。结果表明,该方法可以成功地发现活动和交通阶段,对交通场景进行了准确的描述和感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal segmentation of traffic videos based on traffic phase discovery
In this paper, the topic model is adopted to learn traffic phases from video sequence. Phase detection is applied to determine where a video clip is in the traffic light sequence. Each video clip is labeled by a certain traffic phase, based on which, videos are segmented clip by clip. Using topic models, without any prior knowledge of the traffic rules, activities are detected as distributions over quantized optical flow vectors. Then, traffic phases are discovered as clusters over activities according to the traffic signals. We employ the Fully Sparse Topic Model (FSTM) as the topic model. The results show that our method can successfully discover both activities and traffic phases which make veracious description and perception of traffic scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信