使用gpu的并行QR分解

Ian Schofield, A. Alimohammad
{"title":"使用gpu的并行QR分解","authors":"Ian Schofield, A. Alimohammad","doi":"10.1109/CCECE.2019.8861519","DOIUrl":null,"url":null,"abstract":"This paper presents the performance results of a parallelized, accelerated eigendecomposition using the block Householder QR decomposition algorithm on a graphic processing unit (GPU). The QR software was developed using NVIDIA’s CUDA parallel programming and computing platform and executed on an NVIDIA Tesla GPU accelerator card. Factors affecting program performance of the GPU-accelerated QR implementation are highlighted with respect to the baseline serial implementation developed in MATLAB and executed on a conventional multi-core processor. We compare results with relevant previously published studies and discuss possible performance bottlenecks and speedups.","PeriodicalId":352860,"journal":{"name":"2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallelized QR decomposition using GPUs\",\"authors\":\"Ian Schofield, A. Alimohammad\",\"doi\":\"10.1109/CCECE.2019.8861519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the performance results of a parallelized, accelerated eigendecomposition using the block Householder QR decomposition algorithm on a graphic processing unit (GPU). The QR software was developed using NVIDIA’s CUDA parallel programming and computing platform and executed on an NVIDIA Tesla GPU accelerator card. Factors affecting program performance of the GPU-accelerated QR implementation are highlighted with respect to the baseline serial implementation developed in MATLAB and executed on a conventional multi-core processor. We compare results with relevant previously published studies and discuss possible performance bottlenecks and speedups.\",\"PeriodicalId\":352860,\"journal\":{\"name\":\"2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2019.8861519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2019.8861519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了在图形处理单元(GPU)上使用块Householder QR分解算法进行并行加速特征分解的性能结果。QR软件使用NVIDIA的CUDA并行编程和计算平台开发,并在NVIDIA Tesla GPU加速卡上执行。针对在MATLAB中开发并在传统多核处理器上执行的基线串行实现,重点介绍了影响gpu加速QR实现程序性能的因素。我们将结果与先前发表的相关研究进行比较,并讨论可能的性能瓶颈和加速问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelized QR decomposition using GPUs
This paper presents the performance results of a parallelized, accelerated eigendecomposition using the block Householder QR decomposition algorithm on a graphic processing unit (GPU). The QR software was developed using NVIDIA’s CUDA parallel programming and computing platform and executed on an NVIDIA Tesla GPU accelerator card. Factors affecting program performance of the GPU-accelerated QR implementation are highlighted with respect to the baseline serial implementation developed in MATLAB and executed on a conventional multi-core processor. We compare results with relevant previously published studies and discuss possible performance bottlenecks and speedups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信