{"title":"嵌入式z源DC-DC转换器在光伏应用中的实际限制","authors":"Reddiprasad Reddivari, D. Jena","doi":"10.1109/PICC.2018.8384751","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed mathematical model for embedded Z-source converters (EZSC) by using a state-space averaging technique. In addition, the steady-state operational limits are derived concerning the internal voltage drops and parasitic parameters. Z-source converters exhibit non-minimum phase behavior, which is due to the presence of right-hand plane (RHP) zero. Thus, control of such a converter is a challenge, that slowdowns the transient response of traditional linear controllers. The paper investigates the impedance matching, the position of maximum power point (MPP) in EZSC for both active and shoot-through operational modes, and the effect of RHP zero in the placement of MPP. The steady state solution is derived for dc-link voltage to analyze the impact of non-ideal passive components like capacitors, inductors, diode, and switches. The expression for critical shoot-through duty ratio (STDR) for which the dc-link voltage is maximal is derived. Through critical analysis, the paper provides a valuable insight into the behavior of the embedded topologies and its steady state operational limits under photovoltaic (PV) applications. The paper presents a detailed comparison between positive embedded Z-source converter (PEZSC) and negative embedded Z-source converter (NEZSC). Simulation results are obtained using Matlab/Simulink™ and compared with the experimental results obtained using a laboratory prototype.","PeriodicalId":103331,"journal":{"name":"2018 International Conference on Power, Instrumentation, Control and Computing (PICC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Practical limitations of embedded Z-source DC-DC converters in PV applications\",\"authors\":\"Reddiprasad Reddivari, D. Jena\",\"doi\":\"10.1109/PICC.2018.8384751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a detailed mathematical model for embedded Z-source converters (EZSC) by using a state-space averaging technique. In addition, the steady-state operational limits are derived concerning the internal voltage drops and parasitic parameters. Z-source converters exhibit non-minimum phase behavior, which is due to the presence of right-hand plane (RHP) zero. Thus, control of such a converter is a challenge, that slowdowns the transient response of traditional linear controllers. The paper investigates the impedance matching, the position of maximum power point (MPP) in EZSC for both active and shoot-through operational modes, and the effect of RHP zero in the placement of MPP. The steady state solution is derived for dc-link voltage to analyze the impact of non-ideal passive components like capacitors, inductors, diode, and switches. The expression for critical shoot-through duty ratio (STDR) for which the dc-link voltage is maximal is derived. Through critical analysis, the paper provides a valuable insight into the behavior of the embedded topologies and its steady state operational limits under photovoltaic (PV) applications. The paper presents a detailed comparison between positive embedded Z-source converter (PEZSC) and negative embedded Z-source converter (NEZSC). Simulation results are obtained using Matlab/Simulink™ and compared with the experimental results obtained using a laboratory prototype.\",\"PeriodicalId\":103331,\"journal\":{\"name\":\"2018 International Conference on Power, Instrumentation, Control and Computing (PICC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Power, Instrumentation, Control and Computing (PICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICC.2018.8384751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Power, Instrumentation, Control and Computing (PICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICC.2018.8384751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical limitations of embedded Z-source DC-DC converters in PV applications
This paper presents a detailed mathematical model for embedded Z-source converters (EZSC) by using a state-space averaging technique. In addition, the steady-state operational limits are derived concerning the internal voltage drops and parasitic parameters. Z-source converters exhibit non-minimum phase behavior, which is due to the presence of right-hand plane (RHP) zero. Thus, control of such a converter is a challenge, that slowdowns the transient response of traditional linear controllers. The paper investigates the impedance matching, the position of maximum power point (MPP) in EZSC for both active and shoot-through operational modes, and the effect of RHP zero in the placement of MPP. The steady state solution is derived for dc-link voltage to analyze the impact of non-ideal passive components like capacitors, inductors, diode, and switches. The expression for critical shoot-through duty ratio (STDR) for which the dc-link voltage is maximal is derived. Through critical analysis, the paper provides a valuable insight into the behavior of the embedded topologies and its steady state operational limits under photovoltaic (PV) applications. The paper presents a detailed comparison between positive embedded Z-source converter (PEZSC) and negative embedded Z-source converter (NEZSC). Simulation results are obtained using Matlab/Simulink™ and compared with the experimental results obtained using a laboratory prototype.