混合源微电网中防止原动机失速控制方法的评价

Mariana C. Pulcherio, A. Renjit, M. Illindala, A. Khalsa, J. Eto
{"title":"混合源微电网中防止原动机失速控制方法的评价","authors":"Mariana C. Pulcherio, A. Renjit, M. Illindala, A. Khalsa, J. Eto","doi":"10.1109/ICPS.2016.7490249","DOIUrl":null,"url":null,"abstract":"For a microgrid with a mix of distributed energy resources (DERs), major challenges on its survivability are found in the islanded condition. In particular, a sudden loss of generation or a large and fluctuating load could force the microgrid to operate near its capacity limits. Such a situation can cause a cascading collapse of the system, even when the load demand is within the DER's kW rating - as observed during several tests at the Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid Test Bed. This paper analyzes the prime-mover stalling phenomena behind the system collapse. It highlights how the reserve margin of the system is lowered during transient conditions. Furthermore, two control methods are evaluated to resolve the microgrid collapse problem.","PeriodicalId":266558,"journal":{"name":"2016 IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of control methods to prevent prime-mover stalling in a mixed source microgrid\",\"authors\":\"Mariana C. Pulcherio, A. Renjit, M. Illindala, A. Khalsa, J. Eto\",\"doi\":\"10.1109/ICPS.2016.7490249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a microgrid with a mix of distributed energy resources (DERs), major challenges on its survivability are found in the islanded condition. In particular, a sudden loss of generation or a large and fluctuating load could force the microgrid to operate near its capacity limits. Such a situation can cause a cascading collapse of the system, even when the load demand is within the DER's kW rating - as observed during several tests at the Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid Test Bed. This paper analyzes the prime-mover stalling phenomena behind the system collapse. It highlights how the reserve margin of the system is lowered during transient conditions. Furthermore, two control methods are evaluated to resolve the microgrid collapse problem.\",\"PeriodicalId\":266558,\"journal\":{\"name\":\"2016 IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPS.2016.7490249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS.2016.7490249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于混合分布式能源的微电网,其生存能力面临的主要挑战是在孤岛状态下。特别是,发电的突然损失或大而波动的负荷可能迫使微电网在其容量极限附近运行。这种情况可能导致系统的级联崩溃,即使负载需求在DER的kW额定值之内——正如在电力可靠性技术解决方案联盟(CERTS)微电网试验台进行的几次测试中所观察到的那样。本文分析了系统崩溃背后的原动机失速现象。它突出了在瞬态条件下如何降低系统的储备边际。在此基础上,对两种解决微电网崩溃问题的控制方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of control methods to prevent prime-mover stalling in a mixed source microgrid
For a microgrid with a mix of distributed energy resources (DERs), major challenges on its survivability are found in the islanded condition. In particular, a sudden loss of generation or a large and fluctuating load could force the microgrid to operate near its capacity limits. Such a situation can cause a cascading collapse of the system, even when the load demand is within the DER's kW rating - as observed during several tests at the Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid Test Bed. This paper analyzes the prime-mover stalling phenomena behind the system collapse. It highlights how the reserve margin of the system is lowered during transient conditions. Furthermore, two control methods are evaluated to resolve the microgrid collapse problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信