Tsaranov广义四面体群的Tits替代

V. G. Rebel, Miriam Hahn, G. Rosenberger
{"title":"Tsaranov广义四面体群的Tits替代","authors":"V. G. Rebel, Miriam Hahn, G. Rosenberger","doi":"10.1515/GCC.2009.207","DOIUrl":null,"url":null,"abstract":"A generalized tetrahedron group is defined to be a group admitting the following presentation: , 2 ≤ l, m, n, p, q, r, where each Wi (a, b) is a cyclically reduced word involving both a and b. These groups appear in many contexts, not least as fundamental groups of certain hyperbolic orbifolds or as subgroups of generalized triangle groups. In this paper, we build on previous work to show that the Tits alternative holds for Tsaranov's generalized tetrahedron groups, that is, if G is a Tsaranov generalized tetrahedron group then G contains a non-abelian free subgroup or is solvable-by-finite. The term Tits alternative comes from the respective property for finitely generated linear groups over a field (see [Tits, J. Algebra 20: 250–270, 1972]).","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Tits Alternative for Tsaranov's Generalized Tetrahedron Groups\",\"authors\":\"V. G. Rebel, Miriam Hahn, G. Rosenberger\",\"doi\":\"10.1515/GCC.2009.207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized tetrahedron group is defined to be a group admitting the following presentation: , 2 ≤ l, m, n, p, q, r, where each Wi (a, b) is a cyclically reduced word involving both a and b. These groups appear in many contexts, not least as fundamental groups of certain hyperbolic orbifolds or as subgroups of generalized triangle groups. In this paper, we build on previous work to show that the Tits alternative holds for Tsaranov's generalized tetrahedron groups, that is, if G is a Tsaranov generalized tetrahedron group then G contains a non-abelian free subgroup or is solvable-by-finite. The term Tits alternative comes from the respective property for finitely generated linear groups over a field (see [Tits, J. Algebra 20: 250–270, 1972]).\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/GCC.2009.207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/GCC.2009.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广义四面体群的定义是:2≤l, m, n, p, q, r,其中每一个Wi (A, b)是一个循环约简词,包含A和b。这些群出现在许多情况下,尤其是作为某些双曲轨道的基本群或作为广义三角形群的子群。本文在前人工作的基础上,证明了Tsaranov广义四面体群的Tits可选性,即如果G是Tsaranov广义四面体群,则G包含一个非阿贝耳自由子群或G是有限可解的。术语Tits替代来自于域上有限生成的线性群的各自性质(参见[Tits, J. Algebra 20: 250-270, 1972])。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Tits Alternative for Tsaranov's Generalized Tetrahedron Groups
A generalized tetrahedron group is defined to be a group admitting the following presentation: , 2 ≤ l, m, n, p, q, r, where each Wi (a, b) is a cyclically reduced word involving both a and b. These groups appear in many contexts, not least as fundamental groups of certain hyperbolic orbifolds or as subgroups of generalized triangle groups. In this paper, we build on previous work to show that the Tits alternative holds for Tsaranov's generalized tetrahedron groups, that is, if G is a Tsaranov generalized tetrahedron group then G contains a non-abelian free subgroup or is solvable-by-finite. The term Tits alternative comes from the respective property for finitely generated linear groups over a field (see [Tits, J. Algebra 20: 250–270, 1972]).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信