在预处理中采用并行方法改进频繁模式增长算法

S. Rathi, C. A. Dhote
{"title":"在预处理中采用并行方法改进频繁模式增长算法","authors":"S. Rathi, C. A. Dhote","doi":"10.1109/ICISCON.2014.6965221","DOIUrl":null,"url":null,"abstract":"Mining frequent itemset is an important step in association rule mining process. In this paper we are applying a parallel approach in the pre-processing step itself to make the dataset favorable for mining frequent itemsets and hence improve the speed and computation power. Due to data explosion, it is necessary to develop a system that can handle scalable data. Many efficient sequential and parallel algorithms were proposed in the recent years. We first explore some major algorithms proposed for mining frequent itemsets. Sorting the dataset in the pre-processing step parallely and pruning the infrequent itemsets improves the efficiency of our algorithm. Due to the drastic improvement in computer architectures and computer performance over the years, high performance computing is gaining importance and we are using one such technique in our implementation: CUDA.","PeriodicalId":193007,"journal":{"name":"2014 International Conference on Information Systems and Computer Networks (ISCON)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using parallel approach in pre-processing to improve frequent pattern growth algorithm\",\"authors\":\"S. Rathi, C. A. Dhote\",\"doi\":\"10.1109/ICISCON.2014.6965221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining frequent itemset is an important step in association rule mining process. In this paper we are applying a parallel approach in the pre-processing step itself to make the dataset favorable for mining frequent itemsets and hence improve the speed and computation power. Due to data explosion, it is necessary to develop a system that can handle scalable data. Many efficient sequential and parallel algorithms were proposed in the recent years. We first explore some major algorithms proposed for mining frequent itemsets. Sorting the dataset in the pre-processing step parallely and pruning the infrequent itemsets improves the efficiency of our algorithm. Due to the drastic improvement in computer architectures and computer performance over the years, high performance computing is gaining importance and we are using one such technique in our implementation: CUDA.\",\"PeriodicalId\":193007,\"journal\":{\"name\":\"2014 International Conference on Information Systems and Computer Networks (ISCON)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Information Systems and Computer Networks (ISCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCON.2014.6965221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCON.2014.6965221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

频繁项集的挖掘是关联规则挖掘过程中的一个重要步骤。在本文中,我们在预处理步骤本身采用并行方法,使数据集有利于挖掘频繁项集,从而提高速度和计算能力。由于数据爆炸,有必要开发一种能够处理可扩展数据的系统。近年来,人们提出了许多高效的顺序和并行算法。我们首先探讨了挖掘频繁项集的一些主要算法。在预处理步骤中对数据集进行并行排序,并对不频繁的项集进行修剪,提高了算法的效率。由于多年来计算机体系结构和计算机性能的急剧改进,高性能计算变得越来越重要,我们在实现中使用了一种这样的技术:CUDA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using parallel approach in pre-processing to improve frequent pattern growth algorithm
Mining frequent itemset is an important step in association rule mining process. In this paper we are applying a parallel approach in the pre-processing step itself to make the dataset favorable for mining frequent itemsets and hence improve the speed and computation power. Due to data explosion, it is necessary to develop a system that can handle scalable data. Many efficient sequential and parallel algorithms were proposed in the recent years. We first explore some major algorithms proposed for mining frequent itemsets. Sorting the dataset in the pre-processing step parallely and pruning the infrequent itemsets improves the efficiency of our algorithm. Due to the drastic improvement in computer architectures and computer performance over the years, high performance computing is gaining importance and we are using one such technique in our implementation: CUDA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信