中位数计算的线性时间界限

M. Blum, R. W. Floyd, V. Pratt, R. Rivest, R. Tarjan
{"title":"中位数计算的线性时间界限","authors":"M. Blum, R. W. Floyd, V. Pratt, R. Rivest, R. Tarjan","doi":"10.1145/800152.804904","DOIUrl":null,"url":null,"abstract":"New upper and lower bounds are presented for the maximum number of comparisons, f(i,n), required to select the i-th largest of n numbers. An upper bound is found, by an analysis of a new selection algorithm, to be a linear function of n: f(i,n) ≤ 103n/18 < 5.73n, for 1 ≤ i ≤ n. A lower bound is shown deductively to be: f(i,n) ≥ n+min(i,n−i+l) + [log2(n)] − 4, for 2 ≤ i ≤ n−1, or, for the case of computing medians: f([n/2],n) ≥ 3n/2 − 3","PeriodicalId":229726,"journal":{"name":"Proceedings of the fourth annual ACM symposium on Theory of computing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1972-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Linear time bounds for median computations\",\"authors\":\"M. Blum, R. W. Floyd, V. Pratt, R. Rivest, R. Tarjan\",\"doi\":\"10.1145/800152.804904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New upper and lower bounds are presented for the maximum number of comparisons, f(i,n), required to select the i-th largest of n numbers. An upper bound is found, by an analysis of a new selection algorithm, to be a linear function of n: f(i,n) ≤ 103n/18 < 5.73n, for 1 ≤ i ≤ n. A lower bound is shown deductively to be: f(i,n) ≥ n+min(i,n−i+l) + [log2(n)] − 4, for 2 ≤ i ≤ n−1, or, for the case of computing medians: f([n/2],n) ≥ 3n/2 − 3\",\"PeriodicalId\":229726,\"journal\":{\"name\":\"Proceedings of the fourth annual ACM symposium on Theory of computing\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fourth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800152.804904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fourth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800152.804904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

对于选择n个数中第i个最大的数所需的最大比较次数f(i,n),给出了新的上下界。通过对一种新的选择算法的分析,发现上界是n的线性函数:当1≤i≤n时,f(i,n)≤103n/18 < 5.73n。当2≤i≤n - 1时,下界演绎为f(i,n - i+l) + [log2(n)] - 4,或者对于计算中位数的情况,f([n/2],n)≥3n/2 - 3
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear time bounds for median computations
New upper and lower bounds are presented for the maximum number of comparisons, f(i,n), required to select the i-th largest of n numbers. An upper bound is found, by an analysis of a new selection algorithm, to be a linear function of n: f(i,n) ≤ 103n/18 < 5.73n, for 1 ≤ i ≤ n. A lower bound is shown deductively to be: f(i,n) ≥ n+min(i,n−i+l) + [log2(n)] − 4, for 2 ≤ i ≤ n−1, or, for the case of computing medians: f([n/2],n) ≥ 3n/2 − 3
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信