从已知类的形式中提取数据的系统

F. Cesarini, M. Gori, S. Marinai, G. Soda
{"title":"从已知类的形式中提取数据的系统","authors":"F. Cesarini, M. Gori, S. Marinai, G. Soda","doi":"10.1109/ICDAR.1995.602120","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a flexible and efficient system for processing forms of a known class. The model is based on attributed relational graphs and the system performs form registration and location of information fields using algorithms based on the hypothesize-and-verify paradigm. A special emphasis has been placed at the low level, where an autoassociator-based connectionist model has exhibited successful results in finding the instruction fields in very noisy forms.","PeriodicalId":273519,"journal":{"name":"Proceedings of 3rd International Conference on Document Analysis and Recognition","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A system for data extraction from forms of known class\",\"authors\":\"F. Cesarini, M. Gori, S. Marinai, G. Soda\",\"doi\":\"10.1109/ICDAR.1995.602120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a flexible and efficient system for processing forms of a known class. The model is based on attributed relational graphs and the system performs form registration and location of information fields using algorithms based on the hypothesize-and-verify paradigm. A special emphasis has been placed at the low level, where an autoassociator-based connectionist model has exhibited successful results in finding the instruction fields in very noisy forms.\",\"PeriodicalId\":273519,\"journal\":{\"name\":\"Proceedings of 3rd International Conference on Document Analysis and Recognition\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.1995.602120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1995.602120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们描述了一个灵活而高效的系统来处理已知类的表单。该模型基于属性关系图,系统使用基于假设-验证范式的算法进行表单注册和信息字段定位。特别强调的是在低层次上,其中基于自关联器的连接主义模型在发现非常嘈杂的形式的指令字段方面取得了成功的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A system for data extraction from forms of known class
In this paper, we describe a flexible and efficient system for processing forms of a known class. The model is based on attributed relational graphs and the system performs form registration and location of information fields using algorithms based on the hypothesize-and-verify paradigm. A special emphasis has been placed at the low level, where an autoassociator-based connectionist model has exhibited successful results in finding the instruction fields in very noisy forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信