一种用于脑电图检测癫痫患者的深度聚合集合学习模型

Sricheta Parui, Uttam Ghosh, Puspita Chatterjee, Deborsi Basu
{"title":"一种用于脑电图检测癫痫患者的深度聚合集合学习模型","authors":"Sricheta Parui, Uttam Ghosh, Puspita Chatterjee, Deborsi Basu","doi":"10.1109/PhDEDITS56681.2022.9955308","DOIUrl":null,"url":null,"abstract":"In this study, we developed a Deep Aggregated Assemble Learning(DAAL) model to diagnose Epilepsy that uses two-step learning and generates the final prediction utilizing the output predictions of the level 0 classifier model. In level 0 CNN, RNN and ANN model has been used, and then a prediction algorithm has been used which predicts the final output from each of the probability vector coming from each model.","PeriodicalId":373652,"journal":{"name":"2022 IEEE 4th PhD Colloquium on Emerging Domain Innovation and Technology for Society (PhD EDITS)","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DAAL: A Deep Aggregated Assemble Learning Model for detecting Epileptic patients from EEG\",\"authors\":\"Sricheta Parui, Uttam Ghosh, Puspita Chatterjee, Deborsi Basu\",\"doi\":\"10.1109/PhDEDITS56681.2022.9955308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we developed a Deep Aggregated Assemble Learning(DAAL) model to diagnose Epilepsy that uses two-step learning and generates the final prediction utilizing the output predictions of the level 0 classifier model. In level 0 CNN, RNN and ANN model has been used, and then a prediction algorithm has been used which predicts the final output from each of the probability vector coming from each model.\",\"PeriodicalId\":373652,\"journal\":{\"name\":\"2022 IEEE 4th PhD Colloquium on Emerging Domain Innovation and Technology for Society (PhD EDITS)\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 4th PhD Colloquium on Emerging Domain Innovation and Technology for Society (PhD EDITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PhDEDITS56681.2022.9955308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th PhD Colloquium on Emerging Domain Innovation and Technology for Society (PhD EDITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PhDEDITS56681.2022.9955308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们开发了一个深度聚合组装学习(DAAL)模型来诊断癫痫,该模型使用两步学习,并利用0级分类器模型的输出预测生成最终预测。在0级CNN中,首先使用RNN和ANN模型,然后使用一种预测算法来预测来自每个模型的每个概率向量的最终输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DAAL: A Deep Aggregated Assemble Learning Model for detecting Epileptic patients from EEG
In this study, we developed a Deep Aggregated Assemble Learning(DAAL) model to diagnose Epilepsy that uses two-step learning and generates the final prediction utilizing the output predictions of the level 0 classifier model. In level 0 CNN, RNN and ANN model has been used, and then a prediction algorithm has been used which predicts the final output from each of the probability vector coming from each model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信