对从本体映射到维度层次结构的多维数据集进行查询处理

Carlos Garcia-Alvarado, C. Ordonez
{"title":"对从本体映射到维度层次结构的多维数据集进行查询处理","authors":"Carlos Garcia-Alvarado, C. Ordonez","doi":"10.1145/2390045.2390055","DOIUrl":null,"url":null,"abstract":"Text columns commonly extend core information stored as atomic values in a relational database, creating a need to explore and summarize text data. OLAP cubes can precisely accomplish such tasks. However, cubes have been overlooked as a mechanism for capturing not only text summarizations, but also for representing and exploring the hierarchical structure of an ontology. In this paper, we focus on exploiting cubes to compute multidimensional aggregations on classified documents stored in a DBMS (keyword frequency, document count, document class frequency and so on). We propose CUBO (CUBed Ontologies), a novel algorithm, which efficiently manipulates the hierarchy behind an ontology. Our algorithm is optimized to compute desired summarizations without having to search all possible dimension combinations, exploiting the sparseness of the document classification frequency matrix. Experiments on large text data sets show CUBO can explore faster more dimension combinations than a standard cube algorithm, especially when the cube has a large number of dimensions. CUBO was developed entirely inside a DBMS, using SQL queries and extensibility features.","PeriodicalId":335396,"journal":{"name":"International Workshop on Data Warehousing and OLAP","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Query processing on cubes mapped from ontologies to dimension hierarchies\",\"authors\":\"Carlos Garcia-Alvarado, C. Ordonez\",\"doi\":\"10.1145/2390045.2390055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text columns commonly extend core information stored as atomic values in a relational database, creating a need to explore and summarize text data. OLAP cubes can precisely accomplish such tasks. However, cubes have been overlooked as a mechanism for capturing not only text summarizations, but also for representing and exploring the hierarchical structure of an ontology. In this paper, we focus on exploiting cubes to compute multidimensional aggregations on classified documents stored in a DBMS (keyword frequency, document count, document class frequency and so on). We propose CUBO (CUBed Ontologies), a novel algorithm, which efficiently manipulates the hierarchy behind an ontology. Our algorithm is optimized to compute desired summarizations without having to search all possible dimension combinations, exploiting the sparseness of the document classification frequency matrix. Experiments on large text data sets show CUBO can explore faster more dimension combinations than a standard cube algorithm, especially when the cube has a large number of dimensions. CUBO was developed entirely inside a DBMS, using SQL queries and extensibility features.\",\"PeriodicalId\":335396,\"journal\":{\"name\":\"International Workshop on Data Warehousing and OLAP\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Warehousing and OLAP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390045.2390055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Warehousing and OLAP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390045.2390055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

文本列通常扩展作为原子值存储在关系数据库中的核心信息,因此需要探索和总结文本数据。OLAP多维数据集可以精确地完成这些任务。然而,多维数据集被忽视了,因为它不仅用于捕获文本摘要,而且还用于表示和探索本体的层次结构。在本文中,我们着重于利用多维数据集来计算存储在DBMS中的分类文档的多维聚合(关键字频率、文档计数、文档类频率等)。我们提出了一种新的算法CUBO (CUBed Ontologies),它可以有效地处理本体背后的层次结构。我们的算法经过优化,可以计算所需的摘要,而不必搜索所有可能的维度组合,利用文档分类频率矩阵的稀疏性。在大型文本数据集上的实验表明,与标准立方体算法相比,CUBO可以更快地探索更多维度的组合,特别是当立方体具有大量维度时。CUBO完全是在DBMS中开发的,使用SQL查询和可扩展性特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Query processing on cubes mapped from ontologies to dimension hierarchies
Text columns commonly extend core information stored as atomic values in a relational database, creating a need to explore and summarize text data. OLAP cubes can precisely accomplish such tasks. However, cubes have been overlooked as a mechanism for capturing not only text summarizations, but also for representing and exploring the hierarchical structure of an ontology. In this paper, we focus on exploiting cubes to compute multidimensional aggregations on classified documents stored in a DBMS (keyword frequency, document count, document class frequency and so on). We propose CUBO (CUBed Ontologies), a novel algorithm, which efficiently manipulates the hierarchy behind an ontology. Our algorithm is optimized to compute desired summarizations without having to search all possible dimension combinations, exploiting the sparseness of the document classification frequency matrix. Experiments on large text data sets show CUBO can explore faster more dimension combinations than a standard cube algorithm, especially when the cube has a large number of dimensions. CUBO was developed entirely inside a DBMS, using SQL queries and extensibility features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信