一种针对Windows恶意软件的预处理分析框架

N. D. Schultz, Adam Duby
{"title":"一种针对Windows恶意软件的预处理分析框架","authors":"N. D. Schultz, Adam Duby","doi":"10.1109/ISDFS55398.2022.9800812","DOIUrl":null,"url":null,"abstract":"Machine learning for malware detection and classification has shown promising results. However, motivated adversaries can thwart such classifiers by perturbing the classifier’s input features. Feature perturbation can be realized by transforming the malware, inducing an adversarial drift in the problem space. Realizable adversarial malware is constrained by available software transformations that preserve the malware’s original semantics yet perturb its features enough to cross a classifier’s decision boundary. Further, transformations should be plausible and robust to preprocessing. If a defender can identify and filter the adversarial noise, then the utility of the adversarial approach is decreased. In this paper, we examine common adversarial techniques against a set of constraints that expose each technique’s realizability. Our observations indicate that most adversarial perturbations can be reduced through forensic preprocessing of the malware, highlighting the advantage of forensic analysis prior to classification.","PeriodicalId":114335,"journal":{"name":"2022 10th International Symposium on Digital Forensics and Security (ISDFS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards A Framework for Preprocessing Analysis of Adversarial Windows Malware\",\"authors\":\"N. D. Schultz, Adam Duby\",\"doi\":\"10.1109/ISDFS55398.2022.9800812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning for malware detection and classification has shown promising results. However, motivated adversaries can thwart such classifiers by perturbing the classifier’s input features. Feature perturbation can be realized by transforming the malware, inducing an adversarial drift in the problem space. Realizable adversarial malware is constrained by available software transformations that preserve the malware’s original semantics yet perturb its features enough to cross a classifier’s decision boundary. Further, transformations should be plausible and robust to preprocessing. If a defender can identify and filter the adversarial noise, then the utility of the adversarial approach is decreased. In this paper, we examine common adversarial techniques against a set of constraints that expose each technique’s realizability. Our observations indicate that most adversarial perturbations can be reduced through forensic preprocessing of the malware, highlighting the advantage of forensic analysis prior to classification.\",\"PeriodicalId\":114335,\"journal\":{\"name\":\"2022 10th International Symposium on Digital Forensics and Security (ISDFS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 10th International Symposium on Digital Forensics and Security (ISDFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDFS55398.2022.9800812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Symposium on Digital Forensics and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS55398.2022.9800812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

恶意软件检测和分类的机器学习已经显示出有希望的结果。然而,有动机的对手可以通过干扰分类器的输入特征来阻止这种分类器。特征扰动可以通过转换恶意软件来实现,在问题空间中诱导对抗性漂移。可实现的对抗性恶意软件受到可用软件转换的限制,这些转换保留了恶意软件的原始语义,但干扰了其特征,足以跨越分类器的决策边界。此外,转换应该对预处理合理且健壮。如果防御者能够识别和过滤对抗性噪声,那么对抗性方法的效用就会降低。在本文中,我们针对一组暴露每种技术的可实现性的约束来检查常见的对抗性技术。我们的观察表明,大多数对抗性干扰可以通过恶意软件的法医预处理来减少,突出了在分类之前进行法医分析的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards A Framework for Preprocessing Analysis of Adversarial Windows Malware
Machine learning for malware detection and classification has shown promising results. However, motivated adversaries can thwart such classifiers by perturbing the classifier’s input features. Feature perturbation can be realized by transforming the malware, inducing an adversarial drift in the problem space. Realizable adversarial malware is constrained by available software transformations that preserve the malware’s original semantics yet perturb its features enough to cross a classifier’s decision boundary. Further, transformations should be plausible and robust to preprocessing. If a defender can identify and filter the adversarial noise, then the utility of the adversarial approach is decreased. In this paper, we examine common adversarial techniques against a set of constraints that expose each technique’s realizability. Our observations indicate that most adversarial perturbations can be reduced through forensic preprocessing of the malware, highlighting the advantage of forensic analysis prior to classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信