Yi-Hsuan Chiang, M. Keller, R. Lim, Polly Huang, J. Beutel
{"title":"海报摘要:轻量级网络健康监测","authors":"Yi-Hsuan Chiang, M. Keller, R. Lim, Polly Huang, J. Beutel","doi":"10.1145/2185677.2185701","DOIUrl":null,"url":null,"abstract":"As the application of WSNs for long-term monitoring purposes becomes real, the issue of WSN system health monitoring grows increasingly important. Manually understanding the root causes of an observed behavior is time-consuming and difficult, often knowledge of prior behavior is necessary for understanding the potential risk on the long-term system performance. The challenges lie in the balance between the amount of system data collected and the level of detail in which state can be inferred from this data. In this paper, we propose a lightweight runtime logging and corresponding network state inference mechanism that enables scalable WSN health monitoring. Concretely, we propose that nodes only report their internal state on the occurrence of important events. Having a very low computational complexity and message overhead within the sensor network, reported events are analyzed at a less constrained network sink.","PeriodicalId":231003,"journal":{"name":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Poster abstract: Light-weight network health monitoring\",\"authors\":\"Yi-Hsuan Chiang, M. Keller, R. Lim, Polly Huang, J. Beutel\",\"doi\":\"10.1145/2185677.2185701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the application of WSNs for long-term monitoring purposes becomes real, the issue of WSN system health monitoring grows increasingly important. Manually understanding the root causes of an observed behavior is time-consuming and difficult, often knowledge of prior behavior is necessary for understanding the potential risk on the long-term system performance. The challenges lie in the balance between the amount of system data collected and the level of detail in which state can be inferred from this data. In this paper, we propose a lightweight runtime logging and corresponding network state inference mechanism that enables scalable WSN health monitoring. Concretely, we propose that nodes only report their internal state on the occurrence of important events. Having a very low computational complexity and message overhead within the sensor network, reported events are analyzed at a less constrained network sink.\",\"PeriodicalId\":231003,\"journal\":{\"name\":\"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2185677.2185701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185677.2185701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poster abstract: Light-weight network health monitoring
As the application of WSNs for long-term monitoring purposes becomes real, the issue of WSN system health monitoring grows increasingly important. Manually understanding the root causes of an observed behavior is time-consuming and difficult, often knowledge of prior behavior is necessary for understanding the potential risk on the long-term system performance. The challenges lie in the balance between the amount of system data collected and the level of detail in which state can be inferred from this data. In this paper, we propose a lightweight runtime logging and corresponding network state inference mechanism that enables scalable WSN health monitoring. Concretely, we propose that nodes only report their internal state on the occurrence of important events. Having a very low computational complexity and message overhead within the sensor network, reported events are analyzed at a less constrained network sink.