同时使用生成对抗网络的超分辨率和分割:在新生儿脑MRI中的应用

Chi-Hieu Pham, Carlos Tor-Díez, H. Meunier, N. Bednarek, R. Fablet, Nicolas Passat, F. Rousseau
{"title":"同时使用生成对抗网络的超分辨率和分割:在新生儿脑MRI中的应用","authors":"Chi-Hieu Pham, Carlos Tor-Díez, H. Meunier, N. Bednarek, R. Fablet, Nicolas Passat, F. Rousseau","doi":"10.1109/ISBI.2019.8759255","DOIUrl":null,"url":null,"abstract":"Brest, France The analysis of clinical neonatal brain MRI remains challenging due to low anisotropic resolution of the data. In most pipelines, images are first re-sampled using interpolation or single image super-resolution techniques and then segmented using (semi-)automated approaches. Image reconstruction and segmentation are then performed separately. In this paper, we propose an end-to-end generative adversarial network for simultaneous high-resolution reconstruction and segmentation of brain MRI data. This joint approach is first assessed on the simulated low-resolution images of the high-resolution neonatal dHCP dataset. Then, the learned model is used to enhance and segment real clinical low-resolution images. Results demonstrate the potential of our proposed method with respect to practical medical applications.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Simultaneous Super-Resolution and Segmentation Using a Generative Adversarial Network: Application to Neonatal Brain MRI\",\"authors\":\"Chi-Hieu Pham, Carlos Tor-Díez, H. Meunier, N. Bednarek, R. Fablet, Nicolas Passat, F. Rousseau\",\"doi\":\"10.1109/ISBI.2019.8759255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brest, France The analysis of clinical neonatal brain MRI remains challenging due to low anisotropic resolution of the data. In most pipelines, images are first re-sampled using interpolation or single image super-resolution techniques and then segmented using (semi-)automated approaches. Image reconstruction and segmentation are then performed separately. In this paper, we propose an end-to-end generative adversarial network for simultaneous high-resolution reconstruction and segmentation of brain MRI data. This joint approach is first assessed on the simulated low-resolution images of the high-resolution neonatal dHCP dataset. Then, the learned model is used to enhance and segment real clinical low-resolution images. Results demonstrate the potential of our proposed method with respect to practical medical applications.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

由于数据的低各向异性分辨率,临床新生儿脑MRI的分析仍然具有挑战性。在大多数管道中,图像首先使用插值或单图像超分辨率技术重新采样,然后使用(半)自动化方法进行分割。然后分别进行图像重建和分割。在本文中,我们提出了一个端到端生成对抗网络,用于脑MRI数据的同时高分辨率重建和分割。这种联合方法首先在高分辨率新生儿dHCP数据集的模拟低分辨率图像上进行评估。然后,使用学习到的模型对真实临床低分辨率图像进行增强和分割。结果证明了我们提出的方法在实际医学应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Super-Resolution and Segmentation Using a Generative Adversarial Network: Application to Neonatal Brain MRI
Brest, France The analysis of clinical neonatal brain MRI remains challenging due to low anisotropic resolution of the data. In most pipelines, images are first re-sampled using interpolation or single image super-resolution techniques and then segmented using (semi-)automated approaches. Image reconstruction and segmentation are then performed separately. In this paper, we propose an end-to-end generative adversarial network for simultaneous high-resolution reconstruction and segmentation of brain MRI data. This joint approach is first assessed on the simulated low-resolution images of the high-resolution neonatal dHCP dataset. Then, the learned model is used to enhance and segment real clinical low-resolution images. Results demonstrate the potential of our proposed method with respect to practical medical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信