使用准敏感属性值对数据进行匿名化

Pu Shi, Li Xiong, B. Fung
{"title":"使用准敏感属性值对数据进行匿名化","authors":"Pu Shi, Li Xiong, B. Fung","doi":"10.1145/1871437.1871628","DOIUrl":null,"url":null,"abstract":"We study the problem of anonymizing data with quasi-sensitive attributes. Quasi-sensitive attributes are not sensitive by themselves, but certain values or their combinations may be linked to external knowledge to reveal indirect sensitive information of an individual. We formalize the notion of l-diversity and t-closeness for quasi-sensitive attributes, which we call QS l-diversity and QS t-closeness, to prevent indirect sensitive attribute disclosure. We propose a two-phase anonymization algorithm that combines quasi-identifying value generalization and quasi-sensitive value suppression to achieve QS l-diversity and QS t-closeness.","PeriodicalId":310611,"journal":{"name":"Proceedings of the 19th ACM international conference on Information and knowledge management","volume":"359 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Anonymizing data with quasi-sensitive attribute values\",\"authors\":\"Pu Shi, Li Xiong, B. Fung\",\"doi\":\"10.1145/1871437.1871628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of anonymizing data with quasi-sensitive attributes. Quasi-sensitive attributes are not sensitive by themselves, but certain values or their combinations may be linked to external knowledge to reveal indirect sensitive information of an individual. We formalize the notion of l-diversity and t-closeness for quasi-sensitive attributes, which we call QS l-diversity and QS t-closeness, to prevent indirect sensitive attribute disclosure. We propose a two-phase anonymization algorithm that combines quasi-identifying value generalization and quasi-sensitive value suppression to achieve QS l-diversity and QS t-closeness.\",\"PeriodicalId\":310611,\"journal\":{\"name\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"volume\":\"359 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1871437.1871628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871437.1871628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

研究了具有准敏感属性的数据匿名化问题。准敏感属性本身并不敏感,但某些值或它们的组合可能与外部知识相关联,从而揭示个体的间接敏感信息。为了防止敏感属性的间接泄露,我们形式化了准敏感属性的l-多样性和t-接近的概念,我们称之为QS l-多样性和QS t-接近。我们提出了一种结合准识别值泛化和准敏感值抑制的两阶段匿名化算法,以实现QS l-多样性和QS t-接近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anonymizing data with quasi-sensitive attribute values
We study the problem of anonymizing data with quasi-sensitive attributes. Quasi-sensitive attributes are not sensitive by themselves, but certain values or their combinations may be linked to external knowledge to reveal indirect sensitive information of an individual. We formalize the notion of l-diversity and t-closeness for quasi-sensitive attributes, which we call QS l-diversity and QS t-closeness, to prevent indirect sensitive attribute disclosure. We propose a two-phase anonymization algorithm that combines quasi-identifying value generalization and quasi-sensitive value suppression to achieve QS l-diversity and QS t-closeness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信