{"title":"圆柱坐标下有效有限差分频域模拟的近似解析边界条件","authors":"M. Wiktor, P. Kowalczyk, M. Mrozowski","doi":"10.1109/MIKON.2006.4345280","DOIUrl":null,"url":null,"abstract":"A simple technique of numerical analysis of open resonator is presented. The technique combines a standard Finite Difference method with the Partial Eigenfunction Expansion. By doing this one gets a simple formulation of radiation boundary condition. The algorithm was tested for the dielectric resonator of different height placed in infinite radial waveguide and excellent agreement of the obtained results with other methods was achieved.","PeriodicalId":315003,"journal":{"name":"2006 International Conference on Microwaves, Radar & Wireless Communications","volume":"124 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate analytical boundary conditions for efficient finite difference frequency domain simulations in cylindrical coordinates\",\"authors\":\"M. Wiktor, P. Kowalczyk, M. Mrozowski\",\"doi\":\"10.1109/MIKON.2006.4345280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple technique of numerical analysis of open resonator is presented. The technique combines a standard Finite Difference method with the Partial Eigenfunction Expansion. By doing this one gets a simple formulation of radiation boundary condition. The algorithm was tested for the dielectric resonator of different height placed in infinite radial waveguide and excellent agreement of the obtained results with other methods was achieved.\",\"PeriodicalId\":315003,\"journal\":{\"name\":\"2006 International Conference on Microwaves, Radar & Wireless Communications\",\"volume\":\"124 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Microwaves, Radar & Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIKON.2006.4345280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microwaves, Radar & Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIKON.2006.4345280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximate analytical boundary conditions for efficient finite difference frequency domain simulations in cylindrical coordinates
A simple technique of numerical analysis of open resonator is presented. The technique combines a standard Finite Difference method with the Partial Eigenfunction Expansion. By doing this one gets a simple formulation of radiation boundary condition. The algorithm was tested for the dielectric resonator of different height placed in infinite radial waveguide and excellent agreement of the obtained results with other methods was achieved.