热轧工业过程的可解释异常检测*

J. Jakubowski, P. Stanisz, Szymon Bobek, G. J. Nalepa
{"title":"热轧工业过程的可解释异常检测*","authors":"J. Jakubowski, P. Stanisz, Szymon Bobek, G. J. Nalepa","doi":"10.1109/DSAA53316.2021.9564228","DOIUrl":null,"url":null,"abstract":"Anomaly detection is emerging trend in manufacturing processes and may be considered as part of the Industry 4.0 revolution. It can serve both as diagnostic tool in predictive maintenance task, as well as trace back mechanism for assessing quality of production or services. In this paper we describe and approach for explainable anomaly detection in industrial data which contains sequential and static features. We based our solution on modified autoencoder architecture with Long Short-Term Memory layers. To address a problem of explinability in deep learning and find origin of the anomalies we have engaged the SHAP method, which gives both local and global explanations of the model. Analysis of SHAP explanations allowed us to determine the source of majority of anomalies detected by deep learning model. We demonstrated the feasibility of our approach on synthetic, reproducible dataset and on real-life data gathered from hot rolling industrial process.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Explainable anomaly detection for Hot-rolling industrial process*\",\"authors\":\"J. Jakubowski, P. Stanisz, Szymon Bobek, G. J. Nalepa\",\"doi\":\"10.1109/DSAA53316.2021.9564228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection is emerging trend in manufacturing processes and may be considered as part of the Industry 4.0 revolution. It can serve both as diagnostic tool in predictive maintenance task, as well as trace back mechanism for assessing quality of production or services. In this paper we describe and approach for explainable anomaly detection in industrial data which contains sequential and static features. We based our solution on modified autoencoder architecture with Long Short-Term Memory layers. To address a problem of explinability in deep learning and find origin of the anomalies we have engaged the SHAP method, which gives both local and global explanations of the model. Analysis of SHAP explanations allowed us to determine the source of majority of anomalies detected by deep learning model. We demonstrated the feasibility of our approach on synthetic, reproducible dataset and on real-life data gathered from hot rolling industrial process.\",\"PeriodicalId\":129612,\"journal\":{\"name\":\"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA53316.2021.9564228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

异常检测是制造过程中的新兴趋势,可能被视为工业4.0革命的一部分。它既可以作为预测性维护任务中的诊断工具,也可以作为评估生产或服务质量的追溯机制。本文描述了一种包含顺序和静态特征的工业数据的可解释异常检测方法。我们的解决方案基于改进的带有长短期记忆层的自编码器架构。为了解决深度学习中的可解释性问题并找到异常的起源,我们采用了SHAP方法,该方法给出了模型的局部和全局解释。对SHAP解释的分析使我们能够确定深度学习模型检测到的大多数异常的来源。我们在合成的、可重复的数据集和从热轧工业过程中收集的实际数据上证明了我们的方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable anomaly detection for Hot-rolling industrial process*
Anomaly detection is emerging trend in manufacturing processes and may be considered as part of the Industry 4.0 revolution. It can serve both as diagnostic tool in predictive maintenance task, as well as trace back mechanism for assessing quality of production or services. In this paper we describe and approach for explainable anomaly detection in industrial data which contains sequential and static features. We based our solution on modified autoencoder architecture with Long Short-Term Memory layers. To address a problem of explinability in deep learning and find origin of the anomalies we have engaged the SHAP method, which gives both local and global explanations of the model. Analysis of SHAP explanations allowed us to determine the source of majority of anomalies detected by deep learning model. We demonstrated the feasibility of our approach on synthetic, reproducible dataset and on real-life data gathered from hot rolling industrial process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信