萨斯喀彻温省北部大草原盐湖泥滩砂层中的自生层状硅酸盐

J. Bentz, R. C. Peterson
{"title":"萨斯喀彻温省北部大草原盐湖泥滩砂层中的自生层状硅酸盐","authors":"J. Bentz, R. C. Peterson","doi":"10.3749/canmin.1900065","DOIUrl":null,"url":null,"abstract":"\n The mudflats of saline lakes are amenable to authigenic clay formation due to the high ionic strength of the solutions driven by evaporative concentration and due to the fluctuating wet/dry cycles. However, the mudflats of saline lakes have received relatively little study given the challenges in sampling unstable sediments coupled with post-depositional alterations that make direct relationships to the climate difficult. In an effort to gain a better understanding of the authigenic phyllosilicates present, the mudflats of 17 sulfate-rich saline lake basins across southern Saskatchewan were sampled. The <2 μm fraction was separated from the sediments and analyzed utilizing X-ray diffraction (XRD), scanning electron microscopy, bulk chemical analysis via digestion and inductively coupled optical emission spectroscopy, and visible and near-infrared reflectance spectroscopy. The mudflat sediments were characterized as highly variable and were classified based on particle size into sediment classes A (clay-rich), B (unsorted till), and C (sand). Despite the high variability in sorting and thickness of the sedimentary layers, the phyllosilicates were distinctive within each class independent of the basin. Phyllosilicates in sediment class A were characterized by well-crystalline dioctahedral (Al) clays similar to the surrounding soils with smectite > illite > kaolinite > chlorite. Phyllosilicates from sediment class B displayed highly variable characteristics ranging between classes A and C. Clays from sediment class C were dominated by illite with decreasing proportions of smectite, kaolinite, and chlorite. The illite in the sand lenses was poorly formed, with broad reflections in the XRD patterns indicative of small crystallite size or high disorder, which is consistent with an authigenic nature. The clays in class C were rich in iron (Fe) and magnesium (Mg) and displayed lath-like morphologies common with authigenic illite forming in sandy porous sediments. The sand lenses of mudflats represent viable targets for finding authigenic clay minerals in detrital-rich sediments to use in understanding past climates on Earth and Mars.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"674 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Authigenic Phyllosilicates in Sand Layers from the Mudflats of Saline Lakes in the Northern Great Prairies, Saskatchewan\",\"authors\":\"J. Bentz, R. C. Peterson\",\"doi\":\"10.3749/canmin.1900065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The mudflats of saline lakes are amenable to authigenic clay formation due to the high ionic strength of the solutions driven by evaporative concentration and due to the fluctuating wet/dry cycles. However, the mudflats of saline lakes have received relatively little study given the challenges in sampling unstable sediments coupled with post-depositional alterations that make direct relationships to the climate difficult. In an effort to gain a better understanding of the authigenic phyllosilicates present, the mudflats of 17 sulfate-rich saline lake basins across southern Saskatchewan were sampled. The <2 μm fraction was separated from the sediments and analyzed utilizing X-ray diffraction (XRD), scanning electron microscopy, bulk chemical analysis via digestion and inductively coupled optical emission spectroscopy, and visible and near-infrared reflectance spectroscopy. The mudflat sediments were characterized as highly variable and were classified based on particle size into sediment classes A (clay-rich), B (unsorted till), and C (sand). Despite the high variability in sorting and thickness of the sedimentary layers, the phyllosilicates were distinctive within each class independent of the basin. Phyllosilicates in sediment class A were characterized by well-crystalline dioctahedral (Al) clays similar to the surrounding soils with smectite > illite > kaolinite > chlorite. Phyllosilicates from sediment class B displayed highly variable characteristics ranging between classes A and C. Clays from sediment class C were dominated by illite with decreasing proportions of smectite, kaolinite, and chlorite. The illite in the sand lenses was poorly formed, with broad reflections in the XRD patterns indicative of small crystallite size or high disorder, which is consistent with an authigenic nature. The clays in class C were rich in iron (Fe) and magnesium (Mg) and displayed lath-like morphologies common with authigenic illite forming in sandy porous sediments. The sand lenses of mudflats represent viable targets for finding authigenic clay minerals in detrital-rich sediments to use in understanding past climates on Earth and Mars.\",\"PeriodicalId\":134244,\"journal\":{\"name\":\"The Canadian Mineralogist\",\"volume\":\"674 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Canadian Mineralogist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3749/canmin.1900065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Mineralogist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3749/canmin.1900065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于蒸发浓度和干湿循环的波动,溶液的离子强度很高,盐湖的泥滩适合自生粘土的形成。然而,盐湖泥滩的研究相对较少,因为对不稳定沉积物的采样存在挑战,加上沉积后的变化,使得与气候的直接关系变得困难。为了更好地了解自生层状硅酸盐的存在,我们对萨斯喀彻温省南部17个富含硫酸盐的盐湖盆地的泥滩进行了采样。伊利石>高岭石>绿泥石。B类层状硅酸盐在A类和C类之间表现出高度变化的特征,C类粘土以伊利石为主,蒙脱石、高岭石和绿泥石的比例逐渐减少。砂透镜体中的伊利石形成较差,XRD谱图反射较宽,晶粒尺寸小,无序度高,符合自生性质。C级粘土富含铁(Fe)和镁(Mg),呈板条状形态,与砂质多孔沉积物中自生伊利石形成相似。泥滩的沙子透镜代表了在富含碎屑的沉积物中寻找自生粘土矿物的可行目标,用于了解地球和火星过去的气候。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Authigenic Phyllosilicates in Sand Layers from the Mudflats of Saline Lakes in the Northern Great Prairies, Saskatchewan
The mudflats of saline lakes are amenable to authigenic clay formation due to the high ionic strength of the solutions driven by evaporative concentration and due to the fluctuating wet/dry cycles. However, the mudflats of saline lakes have received relatively little study given the challenges in sampling unstable sediments coupled with post-depositional alterations that make direct relationships to the climate difficult. In an effort to gain a better understanding of the authigenic phyllosilicates present, the mudflats of 17 sulfate-rich saline lake basins across southern Saskatchewan were sampled. The <2 μm fraction was separated from the sediments and analyzed utilizing X-ray diffraction (XRD), scanning electron microscopy, bulk chemical analysis via digestion and inductively coupled optical emission spectroscopy, and visible and near-infrared reflectance spectroscopy. The mudflat sediments were characterized as highly variable and were classified based on particle size into sediment classes A (clay-rich), B (unsorted till), and C (sand). Despite the high variability in sorting and thickness of the sedimentary layers, the phyllosilicates were distinctive within each class independent of the basin. Phyllosilicates in sediment class A were characterized by well-crystalline dioctahedral (Al) clays similar to the surrounding soils with smectite > illite > kaolinite > chlorite. Phyllosilicates from sediment class B displayed highly variable characteristics ranging between classes A and C. Clays from sediment class C were dominated by illite with decreasing proportions of smectite, kaolinite, and chlorite. The illite in the sand lenses was poorly formed, with broad reflections in the XRD patterns indicative of small crystallite size or high disorder, which is consistent with an authigenic nature. The clays in class C were rich in iron (Fe) and magnesium (Mg) and displayed lath-like morphologies common with authigenic illite forming in sandy porous sediments. The sand lenses of mudflats represent viable targets for finding authigenic clay minerals in detrital-rich sediments to use in understanding past climates on Earth and Mars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信