{"title":"基于OLS线性回归和随机森林的房价预测","authors":"Yige Wang","doi":"10.1145/3456126.3456139","DOIUrl":null,"url":null,"abstract":"Based on a simple dataset with 20 features of houses, this paper builds two forecasting models to predict house prices. It primarily takes a series of data processes, including missing value process, outlier removal, new variables creation, and correlation analysis. Then this paper conducts the first theoretical model using OLS method. Next, it uses secondary cross-validation to optimize the parameters of random forest and gets a respectively realistic model. Finally based on the results, this paper analyzes and compares the advantages and disadvantages of the two models.","PeriodicalId":431685,"journal":{"name":"2021 2nd Asia Service Sciences and Software Engineering Conference","volume":"61 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"House-price Prediction Based on OLS Linear Regression and Random Forest\",\"authors\":\"Yige Wang\",\"doi\":\"10.1145/3456126.3456139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on a simple dataset with 20 features of houses, this paper builds two forecasting models to predict house prices. It primarily takes a series of data processes, including missing value process, outlier removal, new variables creation, and correlation analysis. Then this paper conducts the first theoretical model using OLS method. Next, it uses secondary cross-validation to optimize the parameters of random forest and gets a respectively realistic model. Finally based on the results, this paper analyzes and compares the advantages and disadvantages of the two models.\",\"PeriodicalId\":431685,\"journal\":{\"name\":\"2021 2nd Asia Service Sciences and Software Engineering Conference\",\"volume\":\"61 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd Asia Service Sciences and Software Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3456126.3456139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Asia Service Sciences and Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3456126.3456139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
House-price Prediction Based on OLS Linear Regression and Random Forest
Based on a simple dataset with 20 features of houses, this paper builds two forecasting models to predict house prices. It primarily takes a series of data processes, including missing value process, outlier removal, new variables creation, and correlation analysis. Then this paper conducts the first theoretical model using OLS method. Next, it uses secondary cross-validation to optimize the parameters of random forest and gets a respectively realistic model. Finally based on the results, this paper analyzes and compares the advantages and disadvantages of the two models.