基于OLS线性回归和随机森林的房价预测

Yige Wang
{"title":"基于OLS线性回归和随机森林的房价预测","authors":"Yige Wang","doi":"10.1145/3456126.3456139","DOIUrl":null,"url":null,"abstract":"Based on a simple dataset with 20 features of houses, this paper builds two forecasting models to predict house prices. It primarily takes a series of data processes, including missing value process, outlier removal, new variables creation, and correlation analysis. Then this paper conducts the first theoretical model using OLS method. Next, it uses secondary cross-validation to optimize the parameters of random forest and gets a respectively realistic model. Finally based on the results, this paper analyzes and compares the advantages and disadvantages of the two models.","PeriodicalId":431685,"journal":{"name":"2021 2nd Asia Service Sciences and Software Engineering Conference","volume":"61 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"House-price Prediction Based on OLS Linear Regression and Random Forest\",\"authors\":\"Yige Wang\",\"doi\":\"10.1145/3456126.3456139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on a simple dataset with 20 features of houses, this paper builds two forecasting models to predict house prices. It primarily takes a series of data processes, including missing value process, outlier removal, new variables creation, and correlation analysis. Then this paper conducts the first theoretical model using OLS method. Next, it uses secondary cross-validation to optimize the parameters of random forest and gets a respectively realistic model. Finally based on the results, this paper analyzes and compares the advantages and disadvantages of the two models.\",\"PeriodicalId\":431685,\"journal\":{\"name\":\"2021 2nd Asia Service Sciences and Software Engineering Conference\",\"volume\":\"61 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd Asia Service Sciences and Software Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3456126.3456139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Asia Service Sciences and Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3456126.3456139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文基于一个包含20个房屋特征的简单数据集,构建了两个预测模型来预测房价。它主要需要一系列的数据处理,包括缺失值处理、异常值去除、新变量创建和相关性分析。然后运用OLS方法进行了第一个理论模型的建立。其次,利用二次交叉验证对随机森林参数进行优化,得到各自的真实模型;最后,在此基础上,对两种模式的优缺点进行了分析和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
House-price Prediction Based on OLS Linear Regression and Random Forest
Based on a simple dataset with 20 features of houses, this paper builds two forecasting models to predict house prices. It primarily takes a series of data processes, including missing value process, outlier removal, new variables creation, and correlation analysis. Then this paper conducts the first theoretical model using OLS method. Next, it uses secondary cross-validation to optimize the parameters of random forest and gets a respectively realistic model. Finally based on the results, this paper analyzes and compares the advantages and disadvantages of the two models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信