确定性玻尔兹曼机VLSI可以使用多芯片模块进行缩放

Michael Murray, J. Burr, D. Stork, Ming-Tak Leung, K. Boonyanit, G. Wolff, A. Peterson
{"title":"确定性玻尔兹曼机VLSI可以使用多芯片模块进行缩放","authors":"Michael Murray, J. Burr, D. Stork, Ming-Tak Leung, K. Boonyanit, G. Wolff, A. Peterson","doi":"10.1109/ASAP.1992.218571","DOIUrl":null,"url":null,"abstract":"Describes a special purpose, very high speed, digital deterministic Boltzmann neural network VLSI chip. Each chip has 32 physical neural processors, which can be apportioned into an arbitrary topology (input, multiple hidden and output layers) of up to 160 virtual neurons total. Under typical conditions, the chip learns at approximately 5*10/sup 8/ connection updates/second (CUPS). Through relatively minor (subsequent) modifications, the authors' chips can be 'tiled' in multi-chip modules, to make multi-layer networks of arbitrary size suffering only slight communications delays and overhead. In this way, the number of CUPS can be made arbitrarily large, limited only by the number of chips tiled. The chip's high speed is due to massively parallel array computation of the inner products of connection weights and neural activations, limited (but adequate) precision for weights and activations (5 bits), high clock rate (180 MHz), as well as several algorithmic and design insights.<<ETX>>","PeriodicalId":265438,"journal":{"name":"[1992] Proceedings of the International Conference on Application Specific Array Processors","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deterministic Boltzmann machine VLSI can be scaled using multi-chip modules\",\"authors\":\"Michael Murray, J. Burr, D. Stork, Ming-Tak Leung, K. Boonyanit, G. Wolff, A. Peterson\",\"doi\":\"10.1109/ASAP.1992.218571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a special purpose, very high speed, digital deterministic Boltzmann neural network VLSI chip. Each chip has 32 physical neural processors, which can be apportioned into an arbitrary topology (input, multiple hidden and output layers) of up to 160 virtual neurons total. Under typical conditions, the chip learns at approximately 5*10/sup 8/ connection updates/second (CUPS). Through relatively minor (subsequent) modifications, the authors' chips can be 'tiled' in multi-chip modules, to make multi-layer networks of arbitrary size suffering only slight communications delays and overhead. In this way, the number of CUPS can be made arbitrarily large, limited only by the number of chips tiled. The chip's high speed is due to massively parallel array computation of the inner products of connection weights and neural activations, limited (but adequate) precision for weights and activations (5 bits), high clock rate (180 MHz), as well as several algorithmic and design insights.<<ETX>>\",\"PeriodicalId\":265438,\"journal\":{\"name\":\"[1992] Proceedings of the International Conference on Application Specific Array Processors\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings of the International Conference on Application Specific Array Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.1992.218571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the International Conference on Application Specific Array Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.1992.218571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了一种专用的、非常高速的数字确定性玻尔兹曼神经网络VLSI芯片。每个芯片有32个物理神经处理器,可以分配到任意拓扑(输入层,多个隐藏层和输出层),最多可容纳160个虚拟神经元。在典型条件下,芯片的学习速度约为5*10/sup / 8/连接更新/秒(CUPS)。通过相对较小的(后续)修改,作者的芯片可以“平铺”在多芯片模块中,使任意大小的多层网络只遭受轻微的通信延迟和开销。通过这种方式,CUPS的数量可以任意增加,仅受平铺的芯片数量的限制。该芯片的高速是由于连接权重和神经激活的内部乘积的大规模并行阵列计算,有限(但足够)的权重和激活精度(5位),高时钟速率(180 MHz),以及一些算法和设计见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic Boltzmann machine VLSI can be scaled using multi-chip modules
Describes a special purpose, very high speed, digital deterministic Boltzmann neural network VLSI chip. Each chip has 32 physical neural processors, which can be apportioned into an arbitrary topology (input, multiple hidden and output layers) of up to 160 virtual neurons total. Under typical conditions, the chip learns at approximately 5*10/sup 8/ connection updates/second (CUPS). Through relatively minor (subsequent) modifications, the authors' chips can be 'tiled' in multi-chip modules, to make multi-layer networks of arbitrary size suffering only slight communications delays and overhead. In this way, the number of CUPS can be made arbitrarily large, limited only by the number of chips tiled. The chip's high speed is due to massively parallel array computation of the inner products of connection weights and neural activations, limited (but adequate) precision for weights and activations (5 bits), high clock rate (180 MHz), as well as several algorithmic and design insights.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信