VTK高斯混合模型的期望最大化

The VTK Journal Pub Date : 2010-09-21 DOI:10.54294/7bon9f
D. Doria
{"title":"VTK高斯混合模型的期望最大化","authors":"D. Doria","doi":"10.54294/7bon9f","DOIUrl":null,"url":null,"abstract":"Expectation maximization (EM) is a common technique for estimating the parameters of a model after having collected observations of data generated by the model. We first explain the algorithm, then present our impelementation. We focus on estimation of the parameters of a Gaussian Mixture Model (GMM). The implementation is written in the VTK framework and is provided as a new class, vtkExpectationMaximization.The code is hosted here: http://github.com/daviddoria/ExpectationMaximization for the time being.","PeriodicalId":251524,"journal":{"name":"The VTK Journal","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expectation Maximization of Gausian Mixture Models in VTK\",\"authors\":\"D. Doria\",\"doi\":\"10.54294/7bon9f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expectation maximization (EM) is a common technique for estimating the parameters of a model after having collected observations of data generated by the model. We first explain the algorithm, then present our impelementation. We focus on estimation of the parameters of a Gaussian Mixture Model (GMM). The implementation is written in the VTK framework and is provided as a new class, vtkExpectationMaximization.The code is hosted here: http://github.com/daviddoria/ExpectationMaximization for the time being.\",\"PeriodicalId\":251524,\"journal\":{\"name\":\"The VTK Journal\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The VTK Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54294/7bon9f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The VTK Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54294/7bon9f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

期望最大化(EM)是在收集模型生成的数据的观测值后估计模型参数的常用技术。我们首先解释算法,然后给出我们的实现。我们主要研究高斯混合模型(GMM)的参数估计。实现是在VTK框架中编写的,并作为一个新类vtkExpectationMaximization提供。代码暂时托管在这里:http://github.com/daviddoria/ExpectationMaximization。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expectation Maximization of Gausian Mixture Models in VTK
Expectation maximization (EM) is a common technique for estimating the parameters of a model after having collected observations of data generated by the model. We first explain the algorithm, then present our impelementation. We focus on estimation of the parameters of a Gaussian Mixture Model (GMM). The implementation is written in the VTK framework and is provided as a new class, vtkExpectationMaximization.The code is hosted here: http://github.com/daviddoria/ExpectationMaximization for the time being.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信