基于多方案分类器的多项朴素贝叶斯估计酒店差评的精度和召回率

S. Shajahan, T. Poovizhi
{"title":"基于多方案分类器的多项朴素贝叶斯估计酒店差评的精度和召回率","authors":"S. Shajahan, T. Poovizhi","doi":"10.1109/ICBATS54253.2022.9759081","DOIUrl":null,"url":null,"abstract":"To estimate precision and recall for hotel star rating using sentiment content. Majority class classifier with sample size (N=10) and Multinomial Naive Bayes with sample size (N=10) were iterated at different times for predicting accuracy percentage of hotel review. The F1 measure used in prediction to probabilities which helps to improve the prediction of accuracy percentage. The sigmoid function used in Simple majority classifier prediction to probability which helps to improve the prediction of accuracy. There was a statistical significance between Multinomial Naive Bayes and Majority class classifiers (p=0.00). Results proved that Multinomial Naive Bayes got significant results with 68% accuracy compared to Majority Class Classifier with 67% accuracy. Multinomial Naive Bayes is a simple and most effective algorithm to build fast machine learning models. Multinomial Naive bayes with f1 measure helps in predicting with more accuracy percentage of hotel review.","PeriodicalId":289224,"journal":{"name":"2022 International Conference on Business Analytics for Technology and Security (ICBATS)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach to Estimation Precision and Recall for Star Rating Online Customers Based on Negative Hotel Reviews using Multinomial Naive Bayes over Multischeme Classifier\",\"authors\":\"S. Shajahan, T. Poovizhi\",\"doi\":\"10.1109/ICBATS54253.2022.9759081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To estimate precision and recall for hotel star rating using sentiment content. Majority class classifier with sample size (N=10) and Multinomial Naive Bayes with sample size (N=10) were iterated at different times for predicting accuracy percentage of hotel review. The F1 measure used in prediction to probabilities which helps to improve the prediction of accuracy percentage. The sigmoid function used in Simple majority classifier prediction to probability which helps to improve the prediction of accuracy. There was a statistical significance between Multinomial Naive Bayes and Majority class classifiers (p=0.00). Results proved that Multinomial Naive Bayes got significant results with 68% accuracy compared to Majority Class Classifier with 67% accuracy. Multinomial Naive Bayes is a simple and most effective algorithm to build fast machine learning models. Multinomial Naive bayes with f1 measure helps in predicting with more accuracy percentage of hotel review.\",\"PeriodicalId\":289224,\"journal\":{\"name\":\"2022 International Conference on Business Analytics for Technology and Security (ICBATS)\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Business Analytics for Technology and Security (ICBATS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBATS54253.2022.9759081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Business Analytics for Technology and Security (ICBATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBATS54253.2022.9759081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用情感内容估计酒店星级评价的准确率和召回率。对样本容量为N=10的多数类分类器和样本容量为N=10的多项朴素贝叶斯分类器进行不同次数的迭代,预测酒店点评准确率。F1测度用于概率预测,有助于提高预测准确率。将sigmoid函数用于简单多数分类器对概率的预测,有助于提高预测精度。多项朴素贝叶斯与多数类分类器的差异有统计学意义(p=0.00)。结果证明,多项朴素贝叶斯获得了显著的结果,准确率为68%,而多数类分类器的准确率为67%。多项式朴素贝叶斯是建立快速机器学习模型的一种简单有效的算法。带有f1测度的多项朴素贝叶斯有助于提高酒店评论的预测准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Approach to Estimation Precision and Recall for Star Rating Online Customers Based on Negative Hotel Reviews using Multinomial Naive Bayes over Multischeme Classifier
To estimate precision and recall for hotel star rating using sentiment content. Majority class classifier with sample size (N=10) and Multinomial Naive Bayes with sample size (N=10) were iterated at different times for predicting accuracy percentage of hotel review. The F1 measure used in prediction to probabilities which helps to improve the prediction of accuracy percentage. The sigmoid function used in Simple majority classifier prediction to probability which helps to improve the prediction of accuracy. There was a statistical significance between Multinomial Naive Bayes and Majority class classifiers (p=0.00). Results proved that Multinomial Naive Bayes got significant results with 68% accuracy compared to Majority Class Classifier with 67% accuracy. Multinomial Naive Bayes is a simple and most effective algorithm to build fast machine learning models. Multinomial Naive bayes with f1 measure helps in predicting with more accuracy percentage of hotel review.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信