基于DOE的GSA参数调优

M. Amoozegar, E. Rashedi
{"title":"基于DOE的GSA参数调优","authors":"M. Amoozegar, E. Rashedi","doi":"10.1109/ICCKE.2014.6993390","DOIUrl":null,"url":null,"abstract":"Parameter tuning has critical influences on the performance of evolutionary algorithms. Deliberate parameter investigation and changing the value of them is very expensive and time consuming. This paper has applied Design of Experiment (DOE) method to tune the parameters of Gravitational Search Algorithms (GSA) systematically. Also, to reduce its complexity and increase the performance, simple modification has been presented to determine the number of effective objects (Kbest). Best configurations of 17 standard functions are obtained by executing DOE. Analysis of the results confirms that parameter tuning and Kbest modification have improved the performance of the GSA. Meanwhile, these results have been obtained by least experiments in acceptable time.","PeriodicalId":152540,"journal":{"name":"2014 4th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Parameter tuning of GSA using DOE\",\"authors\":\"M. Amoozegar, E. Rashedi\",\"doi\":\"10.1109/ICCKE.2014.6993390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter tuning has critical influences on the performance of evolutionary algorithms. Deliberate parameter investigation and changing the value of them is very expensive and time consuming. This paper has applied Design of Experiment (DOE) method to tune the parameters of Gravitational Search Algorithms (GSA) systematically. Also, to reduce its complexity and increase the performance, simple modification has been presented to determine the number of effective objects (Kbest). Best configurations of 17 standard functions are obtained by executing DOE. Analysis of the results confirms that parameter tuning and Kbest modification have improved the performance of the GSA. Meanwhile, these results have been obtained by least experiments in acceptable time.\",\"PeriodicalId\":152540,\"journal\":{\"name\":\"2014 4th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 4th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE.2014.6993390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2014.6993390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

参数调优对进化算法的性能有重要影响。刻意的参数调查和改变它们的值是非常昂贵和耗时的。本文采用实验设计(DOE)方法对引力搜索算法(GSA)的参数进行了系统的调整。此外,为了降低算法的复杂性和提高算法的性能,本文还对有效目标数(Kbest)进行了简单的修改。通过执行DOE,得到17个标准功能的最佳配置。分析结果表明,参数调整和Kbest修正提高了GSA的性能。同时,这些结果是在可接受的时间内通过最少的实验得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter tuning of GSA using DOE
Parameter tuning has critical influences on the performance of evolutionary algorithms. Deliberate parameter investigation and changing the value of them is very expensive and time consuming. This paper has applied Design of Experiment (DOE) method to tune the parameters of Gravitational Search Algorithms (GSA) systematically. Also, to reduce its complexity and increase the performance, simple modification has been presented to determine the number of effective objects (Kbest). Best configurations of 17 standard functions are obtained by executing DOE. Analysis of the results confirms that parameter tuning and Kbest modification have improved the performance of the GSA. Meanwhile, these results have been obtained by least experiments in acceptable time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信