基于无监督人工蜂群算法和FCM聚类的MRI图像脑肿瘤分割

Neeraja. R. Menon, R. Ramakrishnan
{"title":"基于无监督人工蜂群算法和FCM聚类的MRI图像脑肿瘤分割","authors":"Neeraja. R. Menon, R. Ramakrishnan","doi":"10.1109/ICCSP.2015.7322635","DOIUrl":null,"url":null,"abstract":"Tumor Segmentation of MRI Brain images is still a challenging problem. The paper proposes a fast MRI Brain Image segmentation method based on Artificial Bee Colony (ABC) algorithm and Fuzzy-C Means (FCM) algorithm. The value in continuous gray scale interval is searched using threshold estimation. The optimal threshold value is searched with the help of ABC algorithm. In order to get an efficient fitness function for ABC algorithm the original image is decomposed by discrete wavelet transforms. Then by performing a noise reduction to the approximation image, a filtered image reconstructed with low-frequency components, is produced. The FCM algorithm is used for clustering the segmented image which helps to identify the brain tumor.","PeriodicalId":174192,"journal":{"name":"2015 International Conference on Communications and Signal Processing (ICCSP)","volume":"48 17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Brain Tumor Segmentation in MRI images using unsupervised Artificial Bee Colony algorithm and FCM clustering\",\"authors\":\"Neeraja. R. Menon, R. Ramakrishnan\",\"doi\":\"10.1109/ICCSP.2015.7322635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tumor Segmentation of MRI Brain images is still a challenging problem. The paper proposes a fast MRI Brain Image segmentation method based on Artificial Bee Colony (ABC) algorithm and Fuzzy-C Means (FCM) algorithm. The value in continuous gray scale interval is searched using threshold estimation. The optimal threshold value is searched with the help of ABC algorithm. In order to get an efficient fitness function for ABC algorithm the original image is decomposed by discrete wavelet transforms. Then by performing a noise reduction to the approximation image, a filtered image reconstructed with low-frequency components, is produced. The FCM algorithm is used for clustering the segmented image which helps to identify the brain tumor.\",\"PeriodicalId\":174192,\"journal\":{\"name\":\"2015 International Conference on Communications and Signal Processing (ICCSP)\",\"volume\":\"48 17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Communications and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP.2015.7322635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Communications and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2015.7322635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

MRI脑图像的肿瘤分割仍然是一个具有挑战性的问题。提出了一种基于人工蜂群(ABC)算法和模糊均值(FCM)算法的MRI脑图像快速分割方法。使用阈值估计搜索连续灰度区间内的值。利用ABC算法搜索最优阈值。为了得到ABC算法有效的适应度函数,对原始图像进行离散小波变换分解。然后,通过对近似图像进行降噪,产生用低频分量重建的滤波图像。利用FCM算法对分割后的图像进行聚类,有助于脑肿瘤的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain Tumor Segmentation in MRI images using unsupervised Artificial Bee Colony algorithm and FCM clustering
Tumor Segmentation of MRI Brain images is still a challenging problem. The paper proposes a fast MRI Brain Image segmentation method based on Artificial Bee Colony (ABC) algorithm and Fuzzy-C Means (FCM) algorithm. The value in continuous gray scale interval is searched using threshold estimation. The optimal threshold value is searched with the help of ABC algorithm. In order to get an efficient fitness function for ABC algorithm the original image is decomposed by discrete wavelet transforms. Then by performing a noise reduction to the approximation image, a filtered image reconstructed with low-frequency components, is produced. The FCM algorithm is used for clustering the segmented image which helps to identify the brain tumor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信