基于判别特征的双语文档词级脚本识别

B. V. Dhandra, M. Hangarge, R. Hegadi, V. S. Malemath
{"title":"基于判别特征的双语文档词级脚本识别","authors":"B. V. Dhandra, M. Hangarge, R. Hegadi, V. S. Malemath","doi":"10.1109/ICSCN.2007.350686","DOIUrl":null,"url":null,"abstract":"India is a multi-lingual and multi-script country where a line of a bilingual document page may contain text words in regional language and numerals in English. For optical character recognition (OCR) of such a document page, it is necessary to identify different script forms before running an individual OCR of the scripts. In this paper, we examine the use of discriminating features (aspect ratio, strokes, eccentricity, etc,) as a tool for determining the script at word level in three bilingual documents representing Kannada, Tamil and Devnagari containing English numerals, based on the observation that every text has the distinct visual appearance. The k-nearest neighbour algorithm is used to classify the new word images. The proposed algorithm is tested on 2500 sample words with various font styles and sizes. The results obtained are quite encouraging","PeriodicalId":257948,"journal":{"name":"2007 International Conference on Signal Processing, Communications and Networking","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Word Level Script Identification in Bilingual Documents through Discriminating Features\",\"authors\":\"B. V. Dhandra, M. Hangarge, R. Hegadi, V. S. Malemath\",\"doi\":\"10.1109/ICSCN.2007.350686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"India is a multi-lingual and multi-script country where a line of a bilingual document page may contain text words in regional language and numerals in English. For optical character recognition (OCR) of such a document page, it is necessary to identify different script forms before running an individual OCR of the scripts. In this paper, we examine the use of discriminating features (aspect ratio, strokes, eccentricity, etc,) as a tool for determining the script at word level in three bilingual documents representing Kannada, Tamil and Devnagari containing English numerals, based on the observation that every text has the distinct visual appearance. The k-nearest neighbour algorithm is used to classify the new word images. The proposed algorithm is tested on 2500 sample words with various font styles and sizes. The results obtained are quite encouraging\",\"PeriodicalId\":257948,\"journal\":{\"name\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCN.2007.350686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Signal Processing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2007.350686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

印度是一个多语言和多文字的国家,双语文档页面的一行可能包含区域语言的文本单词和英语的数字。对于这种文档页面的光学字符识别(OCR),在运行脚本的单个OCR之前,有必要识别不同的脚本形式。在本文中,我们研究了区分特征(宽高比、笔画、偏心等)的使用,作为一种工具,在三个包含英语数字的双语文件中,分别代表卡纳达语、泰米尔语和德夫纳格里语,基于对每个文本具有独特视觉外观的观察,在单词水平上确定脚本。使用k近邻算法对新单词图像进行分类。该算法在2500个不同字体样式和大小的样本词上进行了测试。所取得的结果是相当令人鼓舞的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Word Level Script Identification in Bilingual Documents through Discriminating Features
India is a multi-lingual and multi-script country where a line of a bilingual document page may contain text words in regional language and numerals in English. For optical character recognition (OCR) of such a document page, it is necessary to identify different script forms before running an individual OCR of the scripts. In this paper, we examine the use of discriminating features (aspect ratio, strokes, eccentricity, etc,) as a tool for determining the script at word level in three bilingual documents representing Kannada, Tamil and Devnagari containing English numerals, based on the observation that every text has the distinct visual appearance. The k-nearest neighbour algorithm is used to classify the new word images. The proposed algorithm is tested on 2500 sample words with various font styles and sizes. The results obtained are quite encouraging
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信