基于增强机器学习的VVC内部编码

Martin Benjak, H. Meuel, Thorsten Laude, J. Ostermann
{"title":"基于增强机器学习的VVC内部编码","authors":"Martin Benjak, H. Meuel, Thorsten Laude, J. Ostermann","doi":"10.1109/ICAIIC51459.2021.9415184","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an enhanced machine learning-based inter coding algorithm for VVC. Conceptually, the reference pictures from the decoded picture butter are processed using a recurrent neural network to generate an artificial reference picture at the time instance of the currently coded picture. The network is trained using a SATD cost function to minimize the bit rate cost for the prediction error rather than the pixel-wise difference. By this we achieved average weighted BD-rate gains of 0.94%. The coding time increased about 5% for the encoder and 300% for the decoder due to the use of a neural network.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhanced Machine Learning-based Inter Coding for VVC\",\"authors\":\"Martin Benjak, H. Meuel, Thorsten Laude, J. Ostermann\",\"doi\":\"10.1109/ICAIIC51459.2021.9415184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an enhanced machine learning-based inter coding algorithm for VVC. Conceptually, the reference pictures from the decoded picture butter are processed using a recurrent neural network to generate an artificial reference picture at the time instance of the currently coded picture. The network is trained using a SATD cost function to minimize the bit rate cost for the prediction error rather than the pixel-wise difference. By this we achieved average weighted BD-rate gains of 0.94%. The coding time increased about 5% for the encoder and 300% for the decoder due to the use of a neural network.\",\"PeriodicalId\":432977,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC51459.2021.9415184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种增强的基于机器学习的VVC互编码算法。从概念上讲,使用递归神经网络对解码图像中的参考图像进行处理,在当前编码图像的时间实例上生成人工参考图像。网络使用SATD代价函数进行训练,以最小化预测误差的比特率代价,而不是像素差异。通过这种方法,我们实现了0.94%的平均加权bd率增益。由于使用了神经网络,编码器的编码时间增加了约5%,解码器的编码时间增加了300%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Machine Learning-based Inter Coding for VVC
In this paper, we propose an enhanced machine learning-based inter coding algorithm for VVC. Conceptually, the reference pictures from the decoded picture butter are processed using a recurrent neural network to generate an artificial reference picture at the time instance of the currently coded picture. The network is trained using a SATD cost function to minimize the bit rate cost for the prediction error rather than the pixel-wise difference. By this we achieved average weighted BD-rate gains of 0.94%. The coding time increased about 5% for the encoder and 300% for the decoder due to the use of a neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信