未来多核的经验高级性能模型

Surya Narayanan, B. N. Swamy, André Seznec
{"title":"未来多核的经验高级性能模型","authors":"Surya Narayanan, B. N. Swamy, André Seznec","doi":"10.1145/2742854.2742867","DOIUrl":null,"url":null,"abstract":"Estimating the potential performance of parallel applications on the yet-to-be-designed future many cores is very speculative. The simple models proposed by Amdahl's law (fixed input problem size) or Gustafson's law (fixed number of cores) do not completely capture the scaling behaviour of a multi-threaded (MT) application leading to over estimation of performance in the many-core era. On the other hand, modeling many-core by simulation is too slow to study the applications performance. In this paper, we propose a more refined but still tractable, high level empirical performance model for multi-threaded applications, the Serial/Parallel Scaling (SPS) Model to study the scalability and performance of application in many-core era. SPS model learns the application behavior on a given architecture and provides realistic estimates of the performance in future many-cores. Considering both input problem size and the number of cores in modeling, SPS model can help in making high level decisions on the design choice of future many-core applications and architecture. We validate the model on the Many-Integrated Cores (MIC) xeon-phi with 240 logical cores.","PeriodicalId":417279,"journal":{"name":"Proceedings of the 12th ACM International Conference on Computing Frontiers","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An empirical high level performance model for future many-cores\",\"authors\":\"Surya Narayanan, B. N. Swamy, André Seznec\",\"doi\":\"10.1145/2742854.2742867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the potential performance of parallel applications on the yet-to-be-designed future many cores is very speculative. The simple models proposed by Amdahl's law (fixed input problem size) or Gustafson's law (fixed number of cores) do not completely capture the scaling behaviour of a multi-threaded (MT) application leading to over estimation of performance in the many-core era. On the other hand, modeling many-core by simulation is too slow to study the applications performance. In this paper, we propose a more refined but still tractable, high level empirical performance model for multi-threaded applications, the Serial/Parallel Scaling (SPS) Model to study the scalability and performance of application in many-core era. SPS model learns the application behavior on a given architecture and provides realistic estimates of the performance in future many-cores. Considering both input problem size and the number of cores in modeling, SPS model can help in making high level decisions on the design choice of future many-core applications and architecture. We validate the model on the Many-Integrated Cores (MIC) xeon-phi with 240 logical cores.\",\"PeriodicalId\":417279,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on Computing Frontiers\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2742854.2742867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742854.2742867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在尚未设计的未来许多核心上估计并行应用程序的潜在性能是非常投机的。Amdahl定律(固定输入问题大小)或Gustafson定律(固定核数)提出的简单模型并不能完全捕捉到多线程(MT)应用程序的扩展行为,从而导致对多核时代性能的过度估计。另一方面,通过仿真对多核进行建模,速度太慢,无法研究应用程序的性能。在本文中,我们提出了一个更精细但仍然易于处理的多线程应用的高级经验性能模型,串行/并行扩展(SPS)模型,以研究多核时代应用的可扩展性和性能。SPS模型学习给定体系结构上的应用程序行为,并提供对未来多核性能的实际估计。考虑到建模中的输入问题大小和核心数量,SPS模型可以帮助对未来多核心应用程序和体系结构的设计选择做出高层决策。我们在具有240个逻辑核的多集成核(MIC) xeon-phi上验证了该模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An empirical high level performance model for future many-cores
Estimating the potential performance of parallel applications on the yet-to-be-designed future many cores is very speculative. The simple models proposed by Amdahl's law (fixed input problem size) or Gustafson's law (fixed number of cores) do not completely capture the scaling behaviour of a multi-threaded (MT) application leading to over estimation of performance in the many-core era. On the other hand, modeling many-core by simulation is too slow to study the applications performance. In this paper, we propose a more refined but still tractable, high level empirical performance model for multi-threaded applications, the Serial/Parallel Scaling (SPS) Model to study the scalability and performance of application in many-core era. SPS model learns the application behavior on a given architecture and provides realistic estimates of the performance in future many-cores. Considering both input problem size and the number of cores in modeling, SPS model can help in making high level decisions on the design choice of future many-core applications and architecture. We validate the model on the Many-Integrated Cores (MIC) xeon-phi with 240 logical cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信