证明q≤n时的费马大定理

B. D. A. Prayanti, Maxrizal Maxrizal
{"title":"证明q≤n时的费马大定理","authors":"B. D. A. Prayanti, Maxrizal Maxrizal","doi":"10.29303/emj.v5i2.137","DOIUrl":null,"url":null,"abstract":"\n\n\n\nFermat's Last Theorem is a well-known classical theorem in mathematics. Andrew Willes has proven this theorem using the modular elliptic curve. However, the proposed proof is difficult for mathematicians and researchers to understand. For this reason, in this study, we provide evidence of several properties of Fermat's Last Theorem with a simple concept. We use Newton's Binomial Theorem, well-known in Fermat's time. In this study, we prove Fermat's Last Theorem for case . We also use the Newton’s Binomial theorem to verify several cases .\n \n\n\n\n \n\n\n\n ","PeriodicalId":281429,"journal":{"name":"EIGEN MATHEMATICS JOURNAL","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proving The Fermat Last Theorem for Case q≤n\",\"authors\":\"B. D. A. Prayanti, Maxrizal Maxrizal\",\"doi\":\"10.29303/emj.v5i2.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\n\\nFermat's Last Theorem is a well-known classical theorem in mathematics. Andrew Willes has proven this theorem using the modular elliptic curve. However, the proposed proof is difficult for mathematicians and researchers to understand. For this reason, in this study, we provide evidence of several properties of Fermat's Last Theorem with a simple concept. We use Newton's Binomial Theorem, well-known in Fermat's time. In this study, we prove Fermat's Last Theorem for case . We also use the Newton’s Binomial theorem to verify several cases .\\n \\n\\n\\n\\n \\n\\n\\n\\n \",\"PeriodicalId\":281429,\"journal\":{\"name\":\"EIGEN MATHEMATICS JOURNAL\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EIGEN MATHEMATICS JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29303/emj.v5i2.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EIGEN MATHEMATICS JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/emj.v5i2.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

费马大定理是数学中一个著名的经典定理。安德鲁·威尔斯用模椭圆曲线证明了这个定理。然而,提出的证明对于数学家和研究人员来说很难理解。因此,在本研究中,我们用一个简单的概念来证明费马大定理的几个性质。我们用牛顿二项式定理,在费马时代很有名。在本研究中,我们证明了费马大定理。我们还用牛顿二项式定理验证了几种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proving The Fermat Last Theorem for Case q≤n
Fermat's Last Theorem is a well-known classical theorem in mathematics. Andrew Willes has proven this theorem using the modular elliptic curve. However, the proposed proof is difficult for mathematicians and researchers to understand. For this reason, in this study, we provide evidence of several properties of Fermat's Last Theorem with a simple concept. We use Newton's Binomial Theorem, well-known in Fermat's time. In this study, we prove Fermat's Last Theorem for case . We also use the Newton’s Binomial theorem to verify several cases .      
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信