{"title":"利用遗传算法优化人工神经网络","authors":"Shifei Ding, Li Xu, Chunyang Su, Hong Zhu","doi":"10.4156/JCIT.VOL5.ISSUE8.6","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks (ANNs), as a nonlinear and adaptive information processing systems, play an important role in machine learning, artificial intelligence, and data mining. But the performance of ANNs is sensitive to the number of neurons, and chieving a better network performance and simplifying the network topology are two competing objectives. While Genetic Algorithms (GAs) is a kind of random search algorithm which simulates the nature selection and evolution, which has the advantages of good global search abilities and learning the approximate optimal solution without the gradient information of the error functions. This paper makes a brief survey on ANNs optimization with GAs. Firstly, the basic principles of ANNs and GAs are introduced, by analyzing the advantages and disadvantages of GAs and ANNs, the superiority of using GAs to optimize ANNs is expressed. Secondly, we make a brief survey on the basic theories and algorithms of optimizing the network weights, optimizing the network architecture and optimizing the learning rules, and make a discussion on the latest research progresses. At last, we make a prospect on the development trend of the theory.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Using Genetic Algorithms to Optimize Artificial Neural Networks\",\"authors\":\"Shifei Ding, Li Xu, Chunyang Su, Hong Zhu\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE8.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Neural Networks (ANNs), as a nonlinear and adaptive information processing systems, play an important role in machine learning, artificial intelligence, and data mining. But the performance of ANNs is sensitive to the number of neurons, and chieving a better network performance and simplifying the network topology are two competing objectives. While Genetic Algorithms (GAs) is a kind of random search algorithm which simulates the nature selection and evolution, which has the advantages of good global search abilities and learning the approximate optimal solution without the gradient information of the error functions. This paper makes a brief survey on ANNs optimization with GAs. Firstly, the basic principles of ANNs and GAs are introduced, by analyzing the advantages and disadvantages of GAs and ANNs, the superiority of using GAs to optimize ANNs is expressed. Secondly, we make a brief survey on the basic theories and algorithms of optimizing the network weights, optimizing the network architecture and optimizing the learning rules, and make a discussion on the latest research progresses. At last, we make a prospect on the development trend of the theory.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Genetic Algorithms to Optimize Artificial Neural Networks
Artificial Neural Networks (ANNs), as a nonlinear and adaptive information processing systems, play an important role in machine learning, artificial intelligence, and data mining. But the performance of ANNs is sensitive to the number of neurons, and chieving a better network performance and simplifying the network topology are two competing objectives. While Genetic Algorithms (GAs) is a kind of random search algorithm which simulates the nature selection and evolution, which has the advantages of good global search abilities and learning the approximate optimal solution without the gradient information of the error functions. This paper makes a brief survey on ANNs optimization with GAs. Firstly, the basic principles of ANNs and GAs are introduced, by analyzing the advantages and disadvantages of GAs and ANNs, the superiority of using GAs to optimize ANNs is expressed. Secondly, we make a brief survey on the basic theories and algorithms of optimizing the network weights, optimizing the network architecture and optimizing the learning rules, and make a discussion on the latest research progresses. At last, we make a prospect on the development trend of the theory.