现场回填监测数据库

J. Oke, A. Hashemi
{"title":"现场回填监测数据库","authors":"J. Oke, A. Hashemi","doi":"10.36487/acg_repo/2115_29","DOIUrl":null,"url":null,"abstract":"The history of backfilling underground mined-out voids dates back to the beginning of mining several centuries ago using rockfill. Currently, there are three major types of backfill: rock, hydraulic, and paste fill. When backfill is required to be exposed from mining beside or underneath, cement binder is added. Cemented hydraulic fill is the most commonly used backfill as it has existed for over 80 years. In the early 1960s, a series of field instrumentations were initiated by the US Bureau of Mines on hydraulic fill. These studies were conducted in order to better understand the characteristics of hydraulic backfill. \nCemented paste backfill (CPB) has gained wider acceptance in the mining industry and the number of operations utilising CPB has expanded significantly. One of the earliest attempts at field measurement in CPB occurred over 20 years ago. Since then, extensive scientific research has been conducted on CPB material in order to provide mines with a rational design process; however, there has been limited published instrumentation programs. The authors’ affiliated company has been involved with in-stope backfill instrumentation programs at numerous operations. Because of the data collection and field experience, the authors have a better understanding of how in situ backfill behaves, and how operations can use this information to safely improve the efficiency of their backfilling operation. In order to improve the safety and efficiencies of backfilling for other mines and other practitioners, a collection of published data along with additional case studies are provided. This paper summarises both hydraulic and CPB instrumentation results focusing on the important mechanical properties of backfill: time to onset of effective stresses and hydrostatic loading (i.e. fluid backfill to soil‐like material), influences of flushes, thermal expansion and contraction, and influences of seismic and blast events.","PeriodicalId":410057,"journal":{"name":"Paste 2021: 24th International Conference on Paste, Thickened and Filtered Tailings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ backfilll monitoring database\",\"authors\":\"J. Oke, A. Hashemi\",\"doi\":\"10.36487/acg_repo/2115_29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The history of backfilling underground mined-out voids dates back to the beginning of mining several centuries ago using rockfill. Currently, there are three major types of backfill: rock, hydraulic, and paste fill. When backfill is required to be exposed from mining beside or underneath, cement binder is added. Cemented hydraulic fill is the most commonly used backfill as it has existed for over 80 years. In the early 1960s, a series of field instrumentations were initiated by the US Bureau of Mines on hydraulic fill. These studies were conducted in order to better understand the characteristics of hydraulic backfill. \\nCemented paste backfill (CPB) has gained wider acceptance in the mining industry and the number of operations utilising CPB has expanded significantly. One of the earliest attempts at field measurement in CPB occurred over 20 years ago. Since then, extensive scientific research has been conducted on CPB material in order to provide mines with a rational design process; however, there has been limited published instrumentation programs. The authors’ affiliated company has been involved with in-stope backfill instrumentation programs at numerous operations. Because of the data collection and field experience, the authors have a better understanding of how in situ backfill behaves, and how operations can use this information to safely improve the efficiency of their backfilling operation. In order to improve the safety and efficiencies of backfilling for other mines and other practitioners, a collection of published data along with additional case studies are provided. This paper summarises both hydraulic and CPB instrumentation results focusing on the important mechanical properties of backfill: time to onset of effective stresses and hydrostatic loading (i.e. fluid backfill to soil‐like material), influences of flushes, thermal expansion and contraction, and influences of seismic and blast events.\",\"PeriodicalId\":410057,\"journal\":{\"name\":\"Paste 2021: 24th International Conference on Paste, Thickened and Filtered Tailings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paste 2021: 24th International Conference on Paste, Thickened and Filtered Tailings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36487/acg_repo/2115_29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paste 2021: 24th International Conference on Paste, Thickened and Filtered Tailings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36487/acg_repo/2115_29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回填地下采空区的历史可以追溯到几个世纪前使用填石剂采矿的开始。目前,充填体主要有三种类型:岩石充填体、水力充填体和膏体充填体。当采矿旁或下方需要暴露回填体时,加入水泥粘结剂。胶结水力充填体是最常用的充填体,已有80多年的历史。20世纪60年代初,美国矿务局启动了一系列关于水力充填的现场仪器。这些研究是为了更好地了解水力充填体的特性。胶结膏体充填(CPB)在采矿业中得到了更广泛的接受,使用CPB的作业数量也显著增加。对CPB进行野外测量的最早尝试之一发生在20多年前。从那时起,对CPB材料进行了广泛的科学研究,以便为矿山提供合理的设计过程;然而,已经发表的仪器程序有限。作者的附属公司参与了许多作业的采场回填仪器程序。由于数据收集和现场经验,作者对原位充填的行为有了更好的了解,以及如何利用这些信息来安全提高充填作业的效率。为了提高其他矿山和其他从业人员回填的安全性和效率,提供了一组已发表的数据和其他案例研究。本文总结了水力和CPB仪器的结果,重点是充填体的重要力学特性:有效应力和静水载荷(即流体充填到类土材料)开始的时间,冲刷的影响,热膨胀和收缩,以及地震和爆炸事件的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ backfilll monitoring database
The history of backfilling underground mined-out voids dates back to the beginning of mining several centuries ago using rockfill. Currently, there are three major types of backfill: rock, hydraulic, and paste fill. When backfill is required to be exposed from mining beside or underneath, cement binder is added. Cemented hydraulic fill is the most commonly used backfill as it has existed for over 80 years. In the early 1960s, a series of field instrumentations were initiated by the US Bureau of Mines on hydraulic fill. These studies were conducted in order to better understand the characteristics of hydraulic backfill. Cemented paste backfill (CPB) has gained wider acceptance in the mining industry and the number of operations utilising CPB has expanded significantly. One of the earliest attempts at field measurement in CPB occurred over 20 years ago. Since then, extensive scientific research has been conducted on CPB material in order to provide mines with a rational design process; however, there has been limited published instrumentation programs. The authors’ affiliated company has been involved with in-stope backfill instrumentation programs at numerous operations. Because of the data collection and field experience, the authors have a better understanding of how in situ backfill behaves, and how operations can use this information to safely improve the efficiency of their backfilling operation. In order to improve the safety and efficiencies of backfilling for other mines and other practitioners, a collection of published data along with additional case studies are provided. This paper summarises both hydraulic and CPB instrumentation results focusing on the important mechanical properties of backfill: time to onset of effective stresses and hydrostatic loading (i.e. fluid backfill to soil‐like material), influences of flushes, thermal expansion and contraction, and influences of seismic and blast events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信