二维局部图嵌入分析(2DLGEA)用于人脸识别

M. Wan, Zhihui Lai, Zhong Jin
{"title":"二维局部图嵌入分析(2DLGEA)用于人脸识别","authors":"M. Wan, Zhihui Lai, Zhong Jin","doi":"10.1109/CCPR.2008.60","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method, called two-dimensional local graph embedding analysis (2DLGEA), for image feature extraction, which can directly extracts the optimal projective vectors from 2D image matrices rather than image vectors based on the scatter difference criterion. In graph embedding, the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring within the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. The proposed method effectively avoids the singularity problem frequently occurred in the classical linear discriminant analysis due to the small sample size and overcomes the limitations of the traditional linear discriminant analysis algorithm due to data distribution assumptions and available projection directions. Experimental results on Yale, and ORL face databases show the effectiveness of the proposed method.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-Dimensional Local Graph Embedding Analysis(2DLGEA) for Face Recognition\",\"authors\":\"M. Wan, Zhihui Lai, Zhong Jin\",\"doi\":\"10.1109/CCPR.2008.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method, called two-dimensional local graph embedding analysis (2DLGEA), for image feature extraction, which can directly extracts the optimal projective vectors from 2D image matrices rather than image vectors based on the scatter difference criterion. In graph embedding, the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring within the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. The proposed method effectively avoids the singularity problem frequently occurred in the classical linear discriminant analysis due to the small sample size and overcomes the limitations of the traditional linear discriminant analysis algorithm due to data distribution assumptions and available projection directions. Experimental results on Yale, and ORL face databases show the effectiveness of the proposed method.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"289 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的图像特征提取方法——二维局部图嵌入分析(2DLGEA),该方法可以直接从二维图像矩阵中提取最优的投影向量,而不是基于散点差分准则提取图像向量。在图嵌入中,内在图表征类内紧性,并将每个数据点与同类内的相邻数据点连接起来,而惩罚图连接边缘点并表征类间可分性。该方法有效地避免了经典线性判别分析中由于样本量小而经常出现的奇异性问题,克服了传统线性判别分析算法由于数据分布假设和可用投影方向的限制。在耶鲁和ORL人脸数据库上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Dimensional Local Graph Embedding Analysis(2DLGEA) for Face Recognition
This paper proposes a novel method, called two-dimensional local graph embedding analysis (2DLGEA), for image feature extraction, which can directly extracts the optimal projective vectors from 2D image matrices rather than image vectors based on the scatter difference criterion. In graph embedding, the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring within the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. The proposed method effectively avoids the singularity problem frequently occurred in the classical linear discriminant analysis due to the small sample size and overcomes the limitations of the traditional linear discriminant analysis algorithm due to data distribution assumptions and available projection directions. Experimental results on Yale, and ORL face databases show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信