轮椅动力学的贝叶斯LPV-FIR辨识

Y. Fujimoto, Tatsuki Tokushige, M. Nagahara
{"title":"轮椅动力学的贝叶斯LPV-FIR辨识","authors":"Y. Fujimoto, Tatsuki Tokushige, M. Nagahara","doi":"10.23919/SICE.2019.8859813","DOIUrl":null,"url":null,"abstract":"This paper constructs a model of wheelchair dynamics in a data-driven manner. In particular, we focus on the forward movement of the wheelchair, for which we adopt a Linear-Parameter-Varying Finite-Impulse-Response (LPV-FIR) model. To avoid the overfitting behavior, we employ the Bayesian estimation method. We show by experimental results that the constructed model reproduces the observed data more precisely than linear models.","PeriodicalId":147772,"journal":{"name":"2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian LPV-FIR Identification of Wheelchair Dynamics\",\"authors\":\"Y. Fujimoto, Tatsuki Tokushige, M. Nagahara\",\"doi\":\"10.23919/SICE.2019.8859813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper constructs a model of wheelchair dynamics in a data-driven manner. In particular, we focus on the forward movement of the wheelchair, for which we adopt a Linear-Parameter-Varying Finite-Impulse-Response (LPV-FIR) model. To avoid the overfitting behavior, we employ the Bayesian estimation method. We show by experimental results that the constructed model reproduces the observed data more precisely than linear models.\",\"PeriodicalId\":147772,\"journal\":{\"name\":\"2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SICE.2019.8859813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SICE.2019.8859813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文以数据驱动的方式构建了轮椅动力学模型。我们特别关注轮椅的向前运动,为此我们采用了线性参数变化有限脉冲响应(LPV-FIR)模型。为了避免过拟合行为,我们采用了贝叶斯估计方法。实验结果表明,所构建的模型比线性模型更能准确地再现观测数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian LPV-FIR Identification of Wheelchair Dynamics
This paper constructs a model of wheelchair dynamics in a data-driven manner. In particular, we focus on the forward movement of the wheelchair, for which we adopt a Linear-Parameter-Varying Finite-Impulse-Response (LPV-FIR) model. To avoid the overfitting behavior, we employ the Bayesian estimation method. We show by experimental results that the constructed model reproduces the observed data more precisely than linear models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信