基于弹性阻尼机构的金枪鱼仿生机器鱼动力学建模

Xiaofei Wang, Liangwei Deng, Chunhui Zhu, Z. Yin, Jian Wang, Chao Zhou
{"title":"基于弹性阻尼机构的金枪鱼仿生机器鱼动力学建模","authors":"Xiaofei Wang, Liangwei Deng, Chunhui Zhu, Z. Yin, Jian Wang, Chao Zhou","doi":"10.1109/ICMA54519.2022.9856140","DOIUrl":null,"url":null,"abstract":"Compliant passive mechanism has been widely employed in the development of bioinspired aquatic robots that imitates the variable stiffness of fish muscles. However, the existing compliant passive mechanism cannot produce excellent propulsion performance in a wide frequency range. To solve this problem, this paper proposes a novel modeling method for a tuna-inspired robotic fish with passive compliant joint. The passive compliant joint is developed composed of double torsion springs and damping liquid, attempting to implement on the robotic fish to achieve high swimming performance. In order to analyze the motion of the passive joint, a hydrodynamic-twisting-damping torque (HTDT) model is proposed. A dynamic model based on Kane equation is established and indicates that the compliant joint could affect the torque transmitted to the caudal fin to improve the swimming speed of the robotic fish. The particle swarm optimization (PSO) algorithm is further employed to optimize the joint parameters for an enhanced velocity performance. The obtained simulation results suggest that the proposed robotic fish model can reach to a speed of 2.32 m/s, exhibiting an excellent swimming performance. The dynamic model established by this study can make a guideline for the development of robotic fishes with the compliant passive joint.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic Modeling of the Tuna-Inspired Robotic Fish Based on the Elastic-Damping Mechanism\",\"authors\":\"Xiaofei Wang, Liangwei Deng, Chunhui Zhu, Z. Yin, Jian Wang, Chao Zhou\",\"doi\":\"10.1109/ICMA54519.2022.9856140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compliant passive mechanism has been widely employed in the development of bioinspired aquatic robots that imitates the variable stiffness of fish muscles. However, the existing compliant passive mechanism cannot produce excellent propulsion performance in a wide frequency range. To solve this problem, this paper proposes a novel modeling method for a tuna-inspired robotic fish with passive compliant joint. The passive compliant joint is developed composed of double torsion springs and damping liquid, attempting to implement on the robotic fish to achieve high swimming performance. In order to analyze the motion of the passive joint, a hydrodynamic-twisting-damping torque (HTDT) model is proposed. A dynamic model based on Kane equation is established and indicates that the compliant joint could affect the torque transmitted to the caudal fin to improve the swimming speed of the robotic fish. The particle swarm optimization (PSO) algorithm is further employed to optimize the joint parameters for an enhanced velocity performance. The obtained simulation results suggest that the proposed robotic fish model can reach to a speed of 2.32 m/s, exhibiting an excellent swimming performance. The dynamic model established by this study can make a guideline for the development of robotic fishes with the compliant passive joint.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9856140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

柔性被动机构已被广泛应用于仿生水生机器人的开发,以模仿鱼类肌肉的可变刚度。然而,现有的柔性被动机构不能在较宽的频率范围内产生优异的推进性能。为了解决这一问题,本文提出了一种基于被动柔性关节的仿金枪鱼机器鱼的建模方法。研制了由双扭簧和阻尼液组成的被动柔性关节,试图将其实现在机器鱼身上,使其具有较高的游动性能。为了分析被动关节的运动,提出了一种水动力-扭转-阻尼力矩(HTDT)模型。建立了基于Kane方程的动力学模型,表明柔性关节可以影响传递到尾鳍的扭矩,从而提高机器鱼的游动速度。进一步采用粒子群优化算法对关节参数进行优化,以提高关节的速度性能。仿真结果表明,所提出的机器鱼模型可以达到2.32 m/s的速度,具有良好的游动性能。所建立的动力学模型可为柔性被动关节机器鱼的研制提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Modeling of the Tuna-Inspired Robotic Fish Based on the Elastic-Damping Mechanism
Compliant passive mechanism has been widely employed in the development of bioinspired aquatic robots that imitates the variable stiffness of fish muscles. However, the existing compliant passive mechanism cannot produce excellent propulsion performance in a wide frequency range. To solve this problem, this paper proposes a novel modeling method for a tuna-inspired robotic fish with passive compliant joint. The passive compliant joint is developed composed of double torsion springs and damping liquid, attempting to implement on the robotic fish to achieve high swimming performance. In order to analyze the motion of the passive joint, a hydrodynamic-twisting-damping torque (HTDT) model is proposed. A dynamic model based on Kane equation is established and indicates that the compliant joint could affect the torque transmitted to the caudal fin to improve the swimming speed of the robotic fish. The particle swarm optimization (PSO) algorithm is further employed to optimize the joint parameters for an enhanced velocity performance. The obtained simulation results suggest that the proposed robotic fish model can reach to a speed of 2.32 m/s, exhibiting an excellent swimming performance. The dynamic model established by this study can make a guideline for the development of robotic fishes with the compliant passive joint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信