混合频谱估计的遗传算法

A. Sano, Y. Ashida, K. Ohnishi
{"title":"混合频谱估计的遗传算法","authors":"A. Sano, Y. Ashida, K. Ohnishi","doi":"10.1109/ICASSP.1995.479876","DOIUrl":null,"url":null,"abstract":"The paper proposes a method for estimating the mixed spectrum which is composed of line and continuous spectra, the latter of which is characterized by an AR or ARMA noise model. Line spectrum is represented by multiple sinusoids. In order to avoid simultaneous minimization of a prediction error criterion with respect to all unknown parameters, the authors give an efficient iterative algorithm for estimating the frequencies of the sinusoids and other parameters separately. By adopting the genetic algorithm in choice of initial values of the AR or ARMA parameters in the iterative estimation, one can attain globally optimal estimates of unknown parameters. The frequency estimate is given by a modified Toeplitz approximation method using a shifted correlation matrix of observed signals. The effectiveness of the proposed algorithm is validated in numerical simulations.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimation of mixed spectrum using genetic algorithm\",\"authors\":\"A. Sano, Y. Ashida, K. Ohnishi\",\"doi\":\"10.1109/ICASSP.1995.479876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a method for estimating the mixed spectrum which is composed of line and continuous spectra, the latter of which is characterized by an AR or ARMA noise model. Line spectrum is represented by multiple sinusoids. In order to avoid simultaneous minimization of a prediction error criterion with respect to all unknown parameters, the authors give an efficient iterative algorithm for estimating the frequencies of the sinusoids and other parameters separately. By adopting the genetic algorithm in choice of initial values of the AR or ARMA parameters in the iterative estimation, one can attain globally optimal estimates of unknown parameters. The frequency estimate is given by a modified Toeplitz approximation method using a shifted correlation matrix of observed signals. The effectiveness of the proposed algorithm is validated in numerical simulations.\",\"PeriodicalId\":300119,\"journal\":{\"name\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1995.479876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种由线谱和连续谱组成的混合谱估计方法,其中连续谱用AR或ARMA噪声模型来表征。线谱由多个正弦波表示。为了避免同时最小化所有未知参数的预测误差准则,作者给出了一种有效的迭代算法来分别估计正弦波和其他参数的频率。在迭代估计中采用遗传算法选择AR或ARMA参数的初值,可以得到未知参数的全局最优估计。利用观测信号的移位相关矩阵,采用改进的Toeplitz近似方法给出频率估计。数值仿真验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of mixed spectrum using genetic algorithm
The paper proposes a method for estimating the mixed spectrum which is composed of line and continuous spectra, the latter of which is characterized by an AR or ARMA noise model. Line spectrum is represented by multiple sinusoids. In order to avoid simultaneous minimization of a prediction error criterion with respect to all unknown parameters, the authors give an efficient iterative algorithm for estimating the frequencies of the sinusoids and other parameters separately. By adopting the genetic algorithm in choice of initial values of the AR or ARMA parameters in the iterative estimation, one can attain globally optimal estimates of unknown parameters. The frequency estimate is given by a modified Toeplitz approximation method using a shifted correlation matrix of observed signals. The effectiveness of the proposed algorithm is validated in numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信