基于脊正则化的稀疏复矩阵分解的遮挡人脸识别

Diyah Utami Kusumaning Putri, Aina Musdholifah, Faizal Makhrus, Viet-Hang Duong, Phuong Thi Le, Bo-Wei Chen, Jia-Ching Wang
{"title":"基于脊正则化的稀疏复矩阵分解的遮挡人脸识别","authors":"Diyah Utami Kusumaning Putri, Aina Musdholifah, Faizal Makhrus, Viet-Hang Duong, Phuong Thi Le, Bo-Wei Chen, Jia-Ching Wang","doi":"10.1109/ISPACS51563.2021.9651107","DOIUrl":null,"url":null,"abstract":"Matrix factorization is a method for dimensionality reduction which plays an important role in pattern recognition and data analysis. This work exploits the usefulness of our proposed complex matrix factorization (CMF) with ridge regularization (SCMF-L2) in occluded face recognition. Experiments on occluded face recognition reveal that the SCMF-L2 method provides the best recognition result among all the nonnegative matrix factorization (NMF) and CMF methods. The proposed method also reaches the stopping condition and converge much faster than the other NMF and CMF methods.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Occluded Face Recognition Using Sparse Complex Matrix Factorization with Ridge Regularization\",\"authors\":\"Diyah Utami Kusumaning Putri, Aina Musdholifah, Faizal Makhrus, Viet-Hang Duong, Phuong Thi Le, Bo-Wei Chen, Jia-Ching Wang\",\"doi\":\"10.1109/ISPACS51563.2021.9651107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix factorization is a method for dimensionality reduction which plays an important role in pattern recognition and data analysis. This work exploits the usefulness of our proposed complex matrix factorization (CMF) with ridge regularization (SCMF-L2) in occluded face recognition. Experiments on occluded face recognition reveal that the SCMF-L2 method provides the best recognition result among all the nonnegative matrix factorization (NMF) and CMF methods. The proposed method also reaches the stopping condition and converge much faster than the other NMF and CMF methods.\",\"PeriodicalId\":359822,\"journal\":{\"name\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS51563.2021.9651107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

矩阵分解是一种降维方法,在模式识别和数据分析中起着重要的作用。这项工作利用了我们提出的复矩阵分解(CMF)和脊正则化(SCMF-L2)在遮挡人脸识别中的实用性。对遮挡人脸的识别实验表明,SCMF-L2方法在非负矩阵分解(NMF)和CMF方法中具有较好的识别效果。该方法也达到了停止条件,收敛速度比其他NMF和CMF方法快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occluded Face Recognition Using Sparse Complex Matrix Factorization with Ridge Regularization
Matrix factorization is a method for dimensionality reduction which plays an important role in pattern recognition and data analysis. This work exploits the usefulness of our proposed complex matrix factorization (CMF) with ridge regularization (SCMF-L2) in occluded face recognition. Experiments on occluded face recognition reveal that the SCMF-L2 method provides the best recognition result among all the nonnegative matrix factorization (NMF) and CMF methods. The proposed method also reaches the stopping condition and converge much faster than the other NMF and CMF methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信