使用样条拟合、压缩感知和回归方法压缩非结构化网格数据

C. Kamath, Y. Fan
{"title":"使用样条拟合、压缩感知和回归方法压缩非结构化网格数据","authors":"C. Kamath, Y. Fan","doi":"10.1109/GLOBALSIP.2018.8646678","DOIUrl":null,"url":null,"abstract":"Compressing unstructured mesh data from computer simulations poses several challenges that are not encountered in the compression of images or videos. Since the spatial locations of the points are not on a regular grid, as in an image, it is difficult to identify near neighbors of a point whose values can be exploited for compression. In this paper, we investigate how three very different methods — spline fits, compressed sensing, and kernel regression — compare in terms of the reconstruction accuracy and reduction in data size when applied to a practical problem from a plasma physics simulation.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"COMPRESSING UNSTRUCTURED MESH DATA USING SPLINE FITS, COMPRESSED SENSING, AND REGRESSION METHODS\",\"authors\":\"C. Kamath, Y. Fan\",\"doi\":\"10.1109/GLOBALSIP.2018.8646678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressing unstructured mesh data from computer simulations poses several challenges that are not encountered in the compression of images or videos. Since the spatial locations of the points are not on a regular grid, as in an image, it is difficult to identify near neighbors of a point whose values can be exploited for compression. In this paper, we investigate how three very different methods — spline fits, compressed sensing, and kernel regression — compare in terms of the reconstruction accuracy and reduction in data size when applied to a practical problem from a plasma physics simulation.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBALSIP.2018.8646678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBALSIP.2018.8646678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

压缩来自计算机模拟的非结构化网格数据带来了一些在压缩图像或视频时不会遇到的挑战。由于点的空间位置不像在图像中那样在规则网格上,因此很难识别可以利用其值进行压缩的点的近邻。在本文中,我们研究了三种非常不同的方法-样条拟合,压缩感知和核回归-在应用于等离子体物理模拟的实际问题时,如何在重建精度和减少数据大小方面进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPRESSING UNSTRUCTURED MESH DATA USING SPLINE FITS, COMPRESSED SENSING, AND REGRESSION METHODS
Compressing unstructured mesh data from computer simulations poses several challenges that are not encountered in the compression of images or videos. Since the spatial locations of the points are not on a regular grid, as in an image, it is difficult to identify near neighbors of a point whose values can be exploited for compression. In this paper, we investigate how three very different methods — spline fits, compressed sensing, and kernel regression — compare in terms of the reconstruction accuracy and reduction in data size when applied to a practical problem from a plasma physics simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信