S. You, E. Cansizoglu, Deniz Erdoğmuş, Michael J. Massey, Nathan Shapiro
{"title":"基于主曲线跟踪算法的舌下微循环视频微血管血流估计","authors":"S. You, E. Cansizoglu, Deniz Erdoğmuş, Michael J. Massey, Nathan Shapiro","doi":"10.1109/MLSP.2012.6349763","DOIUrl":null,"url":null,"abstract":"Microcirculatory perfusion is an important metric for diagnosing pathological conditions in patients. Capillary density and red blood cell (RBC) velocity provide a measure of tissue perfusion. Estimating RBC velocity is a challenging problem due to noisy video sequences, low contrast between the vessels and the background, and thousands of RBCs moving rapidly through video sequences. Typically, physicians manually trace small blood vessels and visually estimate RBC velocities. The task is labor intensive, tedious, and time-consuming. In this paper, we present a novel application of a principal curve tracing algorithm to automatically track RBCs across video frames and estimate their velocity based on the displacements of RBCs between two consecutive frames. The proposed method is implemented in one sublingual microcirculation video of a healthy subject.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Microvascular blood flow estimation in sublingual microcirculation videos based on a principal curve tracing algorithm\",\"authors\":\"S. You, E. Cansizoglu, Deniz Erdoğmuş, Michael J. Massey, Nathan Shapiro\",\"doi\":\"10.1109/MLSP.2012.6349763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microcirculatory perfusion is an important metric for diagnosing pathological conditions in patients. Capillary density and red blood cell (RBC) velocity provide a measure of tissue perfusion. Estimating RBC velocity is a challenging problem due to noisy video sequences, low contrast between the vessels and the background, and thousands of RBCs moving rapidly through video sequences. Typically, physicians manually trace small blood vessels and visually estimate RBC velocities. The task is labor intensive, tedious, and time-consuming. In this paper, we present a novel application of a principal curve tracing algorithm to automatically track RBCs across video frames and estimate their velocity based on the displacements of RBCs between two consecutive frames. The proposed method is implemented in one sublingual microcirculation video of a healthy subject.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microvascular blood flow estimation in sublingual microcirculation videos based on a principal curve tracing algorithm
Microcirculatory perfusion is an important metric for diagnosing pathological conditions in patients. Capillary density and red blood cell (RBC) velocity provide a measure of tissue perfusion. Estimating RBC velocity is a challenging problem due to noisy video sequences, low contrast between the vessels and the background, and thousands of RBCs moving rapidly through video sequences. Typically, physicians manually trace small blood vessels and visually estimate RBC velocities. The task is labor intensive, tedious, and time-consuming. In this paper, we present a novel application of a principal curve tracing algorithm to automatically track RBCs across video frames and estimate their velocity based on the displacements of RBCs between two consecutive frames. The proposed method is implemented in one sublingual microcirculation video of a healthy subject.