提高字符识别的泛化性能

H. Drucker, Y. Le Cun
{"title":"提高字符识别的泛化性能","authors":"H. Drucker, Y. Le Cun","doi":"10.1109/NNSP.1991.239522","DOIUrl":null,"url":null,"abstract":"One test of a new training algorithm is how well the algorithm generalizes from the training data to the test data. A new neural net training algorithm termed double backpropagation improves generalization in character recognition by minimizing the change in the output due to small changes in the input. This is accomplished by minimizing the normal energy term found in backpropagation and an additional energy term that is a function of the Jacobian.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improving generalization performance in character recognition\",\"authors\":\"H. Drucker, Y. Le Cun\",\"doi\":\"10.1109/NNSP.1991.239522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One test of a new training algorithm is how well the algorithm generalizes from the training data to the test data. A new neural net training algorithm termed double backpropagation improves generalization in character recognition by minimizing the change in the output due to small changes in the input. This is accomplished by minimizing the normal energy term found in backpropagation and an additional energy term that is a function of the Jacobian.<<ETX>>\",\"PeriodicalId\":354832,\"journal\":{\"name\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1991.239522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

新训练算法的一个测试是该算法如何从训练数据泛化到测试数据。一种新的神经网络训练算法称为双反向传播,通过最小化由于输入的微小变化而导致的输出变化来提高字符识别的泛化。这是通过最小化在反向传播中发现的正常能量项和雅可比矩阵函数的附加能量项来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving generalization performance in character recognition
One test of a new training algorithm is how well the algorithm generalizes from the training data to the test data. A new neural net training algorithm termed double backpropagation improves generalization in character recognition by minimizing the change in the output due to small changes in the input. This is accomplished by minimizing the normal energy term found in backpropagation and an additional energy term that is a function of the Jacobian.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信