{"title":"用Treewidth参数化的平面小分支的复杂度二分法","authors":"Julien Baste, Ignasi Sau, D. Thilikos","doi":"10.4230/LIPIcs.IPEC.2018.2","DOIUrl":null,"url":null,"abstract":"For a fixed graph H, we are interested in the parameterized complexity of the following problem, called {H}-M-Deletion, parameterized by the treewidth tw of the input graph: given an n-vertex graph G and an integer k, decide whether there exists S subseteq V(G) with |S| <= k such that G setminus S does not contain H as a minor. In previous work [IPEC, 2017] we proved that if H is planar and connected, then the problem cannot be solved in time 2^{o(tw)} * n^{O(1)} under the ETH, and can be solved in time 2^{O(tw * log tw)} * n^{O(1)}. In this article we manage to classify the optimal asymptotic complexity of {H}-M-Deletion when H is a connected planar graph on at most 5 vertices. Out of the 29 possibilities (discarding the trivial case H = K_1), we prove that 9 of them are solvable in time 2^{Theta (tw)} * n^{O(1)}, and that the other 20 ones are solvable in time 2^{Theta (tw * log tw)} * n^{O(1)}. Namely, we prove that K_4 and the diamond are the only graphs on at most 4 vertices for which the problem is solvable in time 2^{Theta (tw * log tw)} * n^{O(1)}, and that the chair and the banner are the only graphs on 5 vertices for which the problem is solvable in time 2^{Theta (tw)} * n^{O(1)}. For the version of the problem where H is forbidden as a topological minor, the case H = K_{1,4} can be solved in time 2^{Theta (tw)} * n^{O(1)}. This exhibits, to the best of our knowledge, the first difference between the computational complexity of both problems.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Complexity Dichotomy for Hitting Small Planar Minors Parameterized by Treewidth\",\"authors\":\"Julien Baste, Ignasi Sau, D. Thilikos\",\"doi\":\"10.4230/LIPIcs.IPEC.2018.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a fixed graph H, we are interested in the parameterized complexity of the following problem, called {H}-M-Deletion, parameterized by the treewidth tw of the input graph: given an n-vertex graph G and an integer k, decide whether there exists S subseteq V(G) with |S| <= k such that G setminus S does not contain H as a minor. In previous work [IPEC, 2017] we proved that if H is planar and connected, then the problem cannot be solved in time 2^{o(tw)} * n^{O(1)} under the ETH, and can be solved in time 2^{O(tw * log tw)} * n^{O(1)}. In this article we manage to classify the optimal asymptotic complexity of {H}-M-Deletion when H is a connected planar graph on at most 5 vertices. Out of the 29 possibilities (discarding the trivial case H = K_1), we prove that 9 of them are solvable in time 2^{Theta (tw)} * n^{O(1)}, and that the other 20 ones are solvable in time 2^{Theta (tw * log tw)} * n^{O(1)}. Namely, we prove that K_4 and the diamond are the only graphs on at most 4 vertices for which the problem is solvable in time 2^{Theta (tw * log tw)} * n^{O(1)}, and that the chair and the banner are the only graphs on 5 vertices for which the problem is solvable in time 2^{Theta (tw)} * n^{O(1)}. For the version of the problem where H is forbidden as a topological minor, the case H = K_{1,4} can be solved in time 2^{Theta (tw)} * n^{O(1)}. This exhibits, to the best of our knowledge, the first difference between the computational complexity of both problems.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.IPEC.2018.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2018.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Complexity Dichotomy for Hitting Small Planar Minors Parameterized by Treewidth
For a fixed graph H, we are interested in the parameterized complexity of the following problem, called {H}-M-Deletion, parameterized by the treewidth tw of the input graph: given an n-vertex graph G and an integer k, decide whether there exists S subseteq V(G) with |S| <= k such that G setminus S does not contain H as a minor. In previous work [IPEC, 2017] we proved that if H is planar and connected, then the problem cannot be solved in time 2^{o(tw)} * n^{O(1)} under the ETH, and can be solved in time 2^{O(tw * log tw)} * n^{O(1)}. In this article we manage to classify the optimal asymptotic complexity of {H}-M-Deletion when H is a connected planar graph on at most 5 vertices. Out of the 29 possibilities (discarding the trivial case H = K_1), we prove that 9 of them are solvable in time 2^{Theta (tw)} * n^{O(1)}, and that the other 20 ones are solvable in time 2^{Theta (tw * log tw)} * n^{O(1)}. Namely, we prove that K_4 and the diamond are the only graphs on at most 4 vertices for which the problem is solvable in time 2^{Theta (tw * log tw)} * n^{O(1)}, and that the chair and the banner are the only graphs on 5 vertices for which the problem is solvable in time 2^{Theta (tw)} * n^{O(1)}. For the version of the problem where H is forbidden as a topological minor, the case H = K_{1,4} can be solved in time 2^{Theta (tw)} * n^{O(1)}. This exhibits, to the best of our knowledge, the first difference between the computational complexity of both problems.