采用物联网技术的地表水监测交互系统

D. Korpyljov, A. Zdobytskyi, U. Marikutsa, V. Tomyuk, R. Panchak
{"title":"采用物联网技术的地表水监测交互系统","authors":"D. Korpyljov, A. Zdobytskyi, U. Marikutsa, V. Tomyuk, R. Panchak","doi":"10.23939/cds2022.01.001","DOIUrl":null,"url":null,"abstract":"The article considers the possibility and priority of using the Internet of Things, especially its implementation in the surface water monitoring system. The feasibility of developing a complex system of interactive monitoring of surface water using IoT technologies has been substantiated, such a system will significantly improve water monitoring in real-time and ensure the gradual implementation of new sensor capabilities, such as collecting data on the deviation of parameters from the specified normative indicators of water quality in natural reservoirs. An interactive system for intelligent monitoring of water quality in natural reservoirs using Internet of Things technologies and tools has been developed, among others, the Node MCU 1.0 Wi-Fi microcontroller based on the ESP8266 microcontroller was used, as well as PH4502s analog sensor, the DHT-11 water and environmental temperature sensor, the DFRobot water turbidity and signal conversion board V2. The results were displayed on a 2.2- inch QVGA TFT LCD. The microcontroller unit (MCU) is connected to the sensors and further processing is performed on the server unit. The choice of a cloud server was justified, and the transfer of received data was transferred to the cloud using IoT-based ThingSpeak open-source software for water quality monitoring. The computer design environment Autodesk was used to increase the efficiency of design, in particular, the arrangement of elements, ensuring functionality, and ergonomics. The software and hardware of the device were designed with open-source software Fritzing and Arduino (IDE). Based on the obtained statistical data about the quality of water in natural reservoirs, a modern network of smart devices was implemented, such a network is a monitoring and notification system, which considers the linking of data to the time and place of positioning. Features of obtaining data on the results of water quality monitoring in natural reservoirs in real time for consumers were presented, with such monitoring, it is possible to predict and take the necessary measures to prevent possible negative impacts.","PeriodicalId":270498,"journal":{"name":"Computer Design Systems. Theory and Practice","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive system of surface water monitoring using IoT technologies\",\"authors\":\"D. Korpyljov, A. Zdobytskyi, U. Marikutsa, V. Tomyuk, R. Panchak\",\"doi\":\"10.23939/cds2022.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article considers the possibility and priority of using the Internet of Things, especially its implementation in the surface water monitoring system. The feasibility of developing a complex system of interactive monitoring of surface water using IoT technologies has been substantiated, such a system will significantly improve water monitoring in real-time and ensure the gradual implementation of new sensor capabilities, such as collecting data on the deviation of parameters from the specified normative indicators of water quality in natural reservoirs. An interactive system for intelligent monitoring of water quality in natural reservoirs using Internet of Things technologies and tools has been developed, among others, the Node MCU 1.0 Wi-Fi microcontroller based on the ESP8266 microcontroller was used, as well as PH4502s analog sensor, the DHT-11 water and environmental temperature sensor, the DFRobot water turbidity and signal conversion board V2. The results were displayed on a 2.2- inch QVGA TFT LCD. The microcontroller unit (MCU) is connected to the sensors and further processing is performed on the server unit. The choice of a cloud server was justified, and the transfer of received data was transferred to the cloud using IoT-based ThingSpeak open-source software for water quality monitoring. The computer design environment Autodesk was used to increase the efficiency of design, in particular, the arrangement of elements, ensuring functionality, and ergonomics. The software and hardware of the device were designed with open-source software Fritzing and Arduino (IDE). Based on the obtained statistical data about the quality of water in natural reservoirs, a modern network of smart devices was implemented, such a network is a monitoring and notification system, which considers the linking of data to the time and place of positioning. Features of obtaining data on the results of water quality monitoring in natural reservoirs in real time for consumers were presented, with such monitoring, it is possible to predict and take the necessary measures to prevent possible negative impacts.\",\"PeriodicalId\":270498,\"journal\":{\"name\":\"Computer Design Systems. Theory and Practice\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Design Systems. Theory and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/cds2022.01.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Design Systems. Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/cds2022.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了物联网在地表水监测系统中应用的可能性和优先性,特别是物联网在地表水监测系统中的应用。利用物联网技术开发地表水交互监测复杂系统的可行性已经得到证实,该系统将显著提高水监测的实时性,并确保新的传感器功能的逐步实施,例如收集天然水库水质参数偏离规定规范指标的数据。采用基于ESP8266单片机的Node MCU 1.0 Wi-Fi微控制器、PH4502s模拟传感器、DHT-11水环境温度传感器、DFRobot水浊度及信号转换板V2,开发了一套基于物联网技术和工具的自然水库水质智能监测交互系统。结果显示在一个2.2英寸的QVGA TFT液晶显示器上。微控制器单元(MCU)连接到传感器,并在服务器单元上执行进一步的处理。选择云服务器是合理的,并且使用基于物联网的ThingSpeak开源软件将接收到的数据传输到云端,用于水质监测。使用计算机设计环境Autodesk来提高设计效率,特别是元素的排列,确保功能和人体工程学。设备软硬件采用开源软件Fritzing和Arduino (IDE)进行设计。基于所获得的天然水库水质统计数据,实现了一个现代化的智能设备网络,该网络是一个监测和通知系统,该网络考虑了数据与定位时间和地点的联系。介绍了为消费者实时获取天然水库水质监测结果数据的特点,通过监测,可以预测并采取必要措施防止可能产生的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive system of surface water monitoring using IoT technologies
The article considers the possibility and priority of using the Internet of Things, especially its implementation in the surface water monitoring system. The feasibility of developing a complex system of interactive monitoring of surface water using IoT technologies has been substantiated, such a system will significantly improve water monitoring in real-time and ensure the gradual implementation of new sensor capabilities, such as collecting data on the deviation of parameters from the specified normative indicators of water quality in natural reservoirs. An interactive system for intelligent monitoring of water quality in natural reservoirs using Internet of Things technologies and tools has been developed, among others, the Node MCU 1.0 Wi-Fi microcontroller based on the ESP8266 microcontroller was used, as well as PH4502s analog sensor, the DHT-11 water and environmental temperature sensor, the DFRobot water turbidity and signal conversion board V2. The results were displayed on a 2.2- inch QVGA TFT LCD. The microcontroller unit (MCU) is connected to the sensors and further processing is performed on the server unit. The choice of a cloud server was justified, and the transfer of received data was transferred to the cloud using IoT-based ThingSpeak open-source software for water quality monitoring. The computer design environment Autodesk was used to increase the efficiency of design, in particular, the arrangement of elements, ensuring functionality, and ergonomics. The software and hardware of the device were designed with open-source software Fritzing and Arduino (IDE). Based on the obtained statistical data about the quality of water in natural reservoirs, a modern network of smart devices was implemented, such a network is a monitoring and notification system, which considers the linking of data to the time and place of positioning. Features of obtaining data on the results of water quality monitoring in natural reservoirs in real time for consumers were presented, with such monitoring, it is possible to predict and take the necessary measures to prevent possible negative impacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信