基于多项式神经网络的模式分类

B. Misra, S. Satapathy, B. Biswal, P. Dash, G. Panda
{"title":"基于多项式神经网络的模式分类","authors":"B. Misra, S. Satapathy, B. Biswal, P. Dash, G. Panda","doi":"10.1109/ICCIS.2006.252341","DOIUrl":null,"url":null,"abstract":"In this paper we present polynomial neural network (PNN) model using the group method of data handling to generate a nonlinear time series for classification of patterns. The proposed method considers nonlinear characteristics of the datasets and tries to evolve a polynomial using polynomial neural network that will approximate it to arbitrary token values representing the different classes in the dataset. The approach suggested finds the coefficients of PNN model by means of least square estimation technique. The PNN evolves its layers and number of neurons in each layer after evaluating the fitness function till it attains satisfactory result. Empirical result shows that PNN designed classifier performs better than many other classifier models on selected data sets using less number of features","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Pattern Classification using Polynomial Neural Network\",\"authors\":\"B. Misra, S. Satapathy, B. Biswal, P. Dash, G. Panda\",\"doi\":\"10.1109/ICCIS.2006.252341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present polynomial neural network (PNN) model using the group method of data handling to generate a nonlinear time series for classification of patterns. The proposed method considers nonlinear characteristics of the datasets and tries to evolve a polynomial using polynomial neural network that will approximate it to arbitrary token values representing the different classes in the dataset. The approach suggested finds the coefficients of PNN model by means of least square estimation technique. The PNN evolves its layers and number of neurons in each layer after evaluating the fitness function till it attains satisfactory result. Empirical result shows that PNN designed classifier performs better than many other classifier models on selected data sets using less number of features\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了多项式神经网络(PNN)模型,利用数据处理的分组方法生成非线性时间序列用于模式分类。该方法考虑了数据集的非线性特征,并尝试使用多项式神经网络进化多项式,将其近似为代表数据集中不同类别的任意标记值。该方法采用最小二乘估计方法求解PNN模型的系数。在评估适应度函数后,PNN不断进化其层数和每层神经元的数量,直到得到满意的结果。实验结果表明,PNN设计的分类器在使用较少特征的选定数据集上表现优于许多其他分类器模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern Classification using Polynomial Neural Network
In this paper we present polynomial neural network (PNN) model using the group method of data handling to generate a nonlinear time series for classification of patterns. The proposed method considers nonlinear characteristics of the datasets and tries to evolve a polynomial using polynomial neural network that will approximate it to arbitrary token values representing the different classes in the dataset. The approach suggested finds the coefficients of PNN model by means of least square estimation technique. The PNN evolves its layers and number of neurons in each layer after evaluating the fitness function till it attains satisfactory result. Empirical result shows that PNN designed classifier performs better than many other classifier models on selected data sets using less number of features
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信